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Logistics

• The midterm is the Thursday after break in class.

• I will hold a review session Monday from 3-4:30pm and Tuesday
in class.

• There is no real quiz this week, but see Weekly Quizzes section
on Moodle for a single question quiz where you can mark if you
attended Sally Dong’s job talk for extra credit.
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Summary

Last Time:

• Finish up fast low-rank approximation via approximate matrix
multiplication.

• Start on stochastic trace estimation and motivation for
matrix-vector query algorithms.

Today:

• Finish stochastic trace estimation.

• Hutchinson’s estimator and full analysis.
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Matrix Trace

The trace of a matrix A ∈ Rn×n is the sum of it diagonal entries.

tr(A) =
n∑
i=1

Aii.

When A is diagonalizable (e.g., when it is symmetric) with
eigenvalues λ1, . . . , λn, tr(A) =

∑n
i=1 λi.

Main question: How many matrix-vector multiplication
“queries” Ax1, . . . , Axm are required to approximate tr(A)?
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Motivating Example

1
6 tr(B3) = # triangles.

• Explicitly forming B3 and computing tr(B3) takes O(n3) time.

• Can multiply B3 by a vector in 3 · |E| = O(n2) operations.

• So a trace estimation algorithm using m queries, yields an
O(m · |E|) time approximate triangle counting algorithm.
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Other Examples

Example 2: Hessian/Jacobian matrix-vector products.

• For vector x, ∇f(y)x and ∇2f(y)x can often be computed
efficiently using finite difference methods or explicit
differentiation (e.g., via backpropagation).

• Do not need to fully form ∇f(y) or ∇2f(y).

• Many applications of estimating the traces of these matrices,
e.g., in analyzing neural network convergence, in optimization of
score-based methods, etc.

• tr(∇2f(y)x): Laplacian

• tr(∇f(y)x): Divergence
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Other Examples

Example 3: A is a function of another (explicit) matrix B, A = f(B) that
can be applied efficiently via an iterative method.

• Repeated multiplication to apply A = B3.

• Conjugate gradient, MINRES, or any linear system solver:

A = B−1.

• Lanczos method, polynomial/rational approximation:

A = exp(B), A =
√
B, A = log(B), etc.

• These methods run in n2 · C time, where C depends on
properties of B. Typically C ≪ n so n2 · C ≪ n3.
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Matrix Function Examples

• Log-likelihood computation in Bayesian optimization,
experimental design. tr(log(B)) = log det(B).

• Estrada index, a measure of protein folding degree and
more generally, network connectivity. tr(exp(B)).

• Trace inverse, which is important in uncertainty
quantification and many other scientific computing
applications. tr(B−1)

• Information about the matrix eigenvalue spectrum, since
tr(f(B)) =

∑n
i=1 f(λi), where λi is B’s ith eigenvalue.

• E.g., counting the number of eigenvalues in an interval,
spectral density estimation, matrix norms

• See e.g., [Ubaru, and Saad 2017].
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Hutchinson’s Method

Hutchinson 1991, Girard 1987:

• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.
• Return T = 1

m
∑m

i=1 xTi Axi as an approximation to tr(A).

• One of the earliest examples I know of a randomized
algorithm for linear algebraic computation.
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Hutchinson’s Method Error Bound

Theorem
Let T be the trace estimate returned by Hutchinson’s method.
If m = O

( 1
δϵ2

)
, then with probability ≥ 1− δ,∣∣T− tr(A)

∣∣ ≤ ϵ∥A∥F

If A is symmetric positive semidefinite (PSD) then

∥A∥F =

√√√√ n∑
i=1

λ2
i ≤

n∑
i=1

λi = tr(A).

So for PSD A: (1− ϵ) tr(A) ≤ T ≤ (1+ ϵ) tr(A).
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Proof Approach

Theorem
Let T be the trace estimate returned by Hutchinson’s method.
If m = O

( 1
δϵ2

)
, then with probability ≥ 1− δ,∣∣T− tr(A)

∣∣ ≤ ϵ∥A∥F

1. Show that E[T] = tr(A).
2. Bound Var[T].
3. Apply Chebyshev’s inequality.

A tighter proof that uses the Hanson-Wright inequality, an
exponential concentration inequality for quadratic forms, can
improve the δ dependence to log(1/δ) – we’ll cover this later in
the class.
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Expectation Analysis

Hutchinson’s Estimator::

• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.

• Return T = 1
m
∑m

i=1 xTi Axi as an approximation to tr(A).

By linearity of expectation, E[T] = E[xTAx] for a single random ±1
vector x.

E[xTAx] = E
n∑
i=1

n∑
j=1

xixjAij =
n∑
i=1

n∑
j=1

Aij · E[xixj] =
n∑
i=1

Aii.

• When i ̸= j, xixj = 1 with probability 1/2 and −1 with probability
1/2, so E[xixj] = 0. When i = j, xixj = 1, so E[xixj] = 1.

• So the estimator is correct in expectation: E[T] = tr(A).
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Variance Bound

Hutchinson’s Estimator::

• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.

• Return T = 1
m
∑m

i=1 xTi Axi as an approximation to tr(A).

Var[ T ] = 1
m Var[xTAx] = 1

m Var

 n∑
i=1

n∑
j=1

xixjAij


Can we apply linearity of variance here? Almost – need to remove
repeated terms, and then can use pairwise independence.

Var[ T ] = 1
m Var

 n∑
i=1

Aii +
n∑
i=1

∑
j>i

xixj(Aij + Aji)


=

1
m

n∑
i=1

∑
j>i

Var[xixj] · (Aij + Aji)
2 ≤ 1

m

n∑
i=1

∑
j>i

2A2
ij + 2A2

ji ≤
2∥A∥2F
m .
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Final Analysis

Hutchinson’s Estimator::

• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.

• Return T = 1
m
∑m

i=1 xTi Axi as an approximation to tr(A).

Chebyshev’s inequality implies that, for m = 2
δϵ2 :

Pr
[∣∣T− tr(A)

∣∣ ≥ ϵ∥A∥F
]
≤ 2∥A∥2F/m

ϵ2∥A∥2F
= δ.

Could we have gotten a better bound by applying Bernstein’s
inequality to

∑n
i=1

∑
j>i xixj(Aij + Aji)?

Hanson-Wright is an exponential concentration bound that can be
used in the specific case – improves bound to m = O

(
log(1/δ)

ϵ2

)
.
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Optimality of Hutchinson’s Method

The m = O
(
log(1/δ)

ϵ2

)
bound given by the Hanson-Wright

inequality is tight.

• Any algorithm that only uses queries of the form xTi Axi
requires Ω

(
log(1/δ)

ϵ2

)
samples to estimate tr(A) to error

±ϵ tr(A) for PSD A [Wimmer, Wu, Zhang 2014].
• We recently showed that using the full power of
matrix-vector queries, one can achieve O

(
log(1/δ)

ϵ

)
queries

for PSD matrices.
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