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- The midterm is the Thursday after break in class.

- I'will hold a review session Monday from 3-4:30pm and Tuesday
in class.

- There is no real quiz this week, but see Weekly Quizzes section
on Moodle for a single question quiz where you can mark if you
attended Sally Dong's job talk for extra credit.



Last Time:

- Finish up fast low-rank approximation via approximate matrix
multiplication.

- Start on stochastic trace estimation and motivation for
matrix-vector query algorithms.

Today:

- Finish stochastic trace estimation.

- Hutchinson’s estimator and full analysis.



The trace of a matrix A € R"*" is the sum of it diagonal entries.

n
tr(A) = ZA,‘,’.
i=1
When A is diagonalizable (e.g., when it is symmetric) with
eigenvalues Ay, ..., Ap, tr(A) = >, A\

Main question: How many matrix-vector multiplication
“queries” Axq,...,AXpy are required to approximate tr(A)?



Motivating Example

B3
0 1 4 2 1
1 2 6 5 2
4 6 4 6

1 .
: tr(B®) = # triangles.

- Explicitly forming B* and computing tr(B?) takes O(n?) time.
- Can multiply B® by a vector in 3 - |E| = O(n?) operations.

- So a trace estimation algorithm using m queries, yields an
O(m - |E]) time approximate triangle counting algorithm.



Other Examples

Example 2: Hessian/Jacobian matrix-vector products.

- For vector x, Vf(y)x and V2f(y)x can often be computed
efficiently using finite difference methods or explicit
differentiation (e.g., via backpropagation).

- Do not need to fully form Vf(y) or V2f(y).

- Many applications of estimating the traces of these matrices,
e.g, in analyzing neural network convergence, in optimization of
score-based methods, etc.

- tr(V2f(y)x): Laplacian
- tr(Vf(y)x): Divergence



Other Examples

Example 3: A is a function of another (explicit) matrix B, A = f(B) that
can be applied efficiently via an iterative method.

- Repeated multiplication to apply A = B3.

- Conjugate gradient, MINRES, or any linear system solver:
A=B"".
- Lanczos method, polynomial/rational approximation:
A = exp(B), A = VB, A = log(B), etc.

- These methods run in n? - C time, where C depends on
properties of B. Typically C < nson?.-C< nd.



Matrix Function Examples

- Log-likelihood computation in Bayesian optimization,
experimental design. tr(log(B)) = log det(B).

- Estrada index, a measure of protein folding degree and
more generally, network connectivity. tr(exp(B)).

- Trace inverse, which is important in uncertainty
quantification and many other scientific computing
applications. tr(B™1)

- Information about the matrix eigenvalue spectrum, since
tr(f(B)) = 2.1, f(\;), where ) is B's i™" eigenvalue.

- E.g, counting the number of eigenvalues in an interval,
spectral density estimation, matrix norms

- See e.g, [Ubaru, and Saad 2017].



Hutchinson’s Method

Hutchinson 1991, Girard 1987:

- Draw Xy, ..., Xy € R" i.i.d. with random {+1, =1} entries.

* Return T = - >, x/Ax; as an approximation to tr(A).

+1 -1
+1 +1
A -1 A +1| ... A
-1 -1
+1 -1
+1 +1

- One of the earliest examples | know of a randomized
algorithm for linear algebraic computation.



Hutchinson’s Method Error Bound

Theorem

Let T be the trace estimate returned by Hutchinson’s method.
If m = 0 (5), then with probability > 1 -,

T —tr(A)| < el|Allr

If A'is symmetric positive semidefinite (PSD) then

n n
1Alle = | 302 < ST = tr(A).
=1 =1

SoforPSDA:  (1—e)tr(A) < T < (14 ¢€)tr(A).
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Proof Approach

Theorem

Let T be the trace estimate returned by Hutchinson’s method.
If m = 0 (55), then with probability > 1 -,

T = tr(4)] < elAll

1. Show that E[T] = tr(A).
2. Bound Var[T].
3. Apply Chebyshev's inequality.

A tighter proof that uses the Hanson-Wright inequality, an
exponential concentration inequality for quadratic forms, can
improve the ¢ dependence to log(1/6) — we'll cover this later in
the class.

n



Expectation Analysis

Hutchinson's Estimator::
- Draw Xy, ..., Xy € R" Li.d. with random {+1, =1} entries.

- Return T= L 3" xTAx; as an approximation to tr(A).

m I

By linearity of expectation, E[T] = E[x’Ax] for a single random 41
vector x.

E[x'AX| =E Z Z XiXjAj = Z ZA,, E[xx] = Z Aji.

=1 j=1 =1 j=1

- When i # j, xix; = 1 with probability 1/2 and —1 with probability
1/2, 50 E[xixj] = 0. When i = j, x;x; = 1, so E[x;x;] = 1.

- So the estimator is correct in expectation: E[T] = tr(A).
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Variance Bound

Hutchinson's Estimator::
« Draw Xq,..., Xm € R" i.i.d. with random {+1, —1} entries.

. F_ 1 m T
Return T = = % i_, X;AX; as an approximation to tr(A).

= 1 L
Var[T] = mVar[XTAX] = Var D> xxA;

i=1 j=1
Can we apply linearity of variance here? Almost — need to remove
repeated terms, and then can use pairwise independence.

Var[T] = — Var Z/—\,, + ZZx,x, (A +Ai)

=1 j>i

2
7ZZVar[XX] (A +Ai) < ZZZA2+2A2_2H;\,HF~

=1 j>i =1 j>i
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Final Analysis

Hutchinson's Estimator::
- Draw Xq, ..., ,Xm € R" i.i.d. with random {+1, —1} entries.

. T_oANMm T
Return T = - ", X;AX; as an approximation to tr(A).

Chebyshev's inequality implies that, for m = %

2||All2/m

=
e|Allz

Pr ([T —tr(A)] > ellAll] <

Could we have gotten a better bound by applying Bernstein’s
inequality to Y71, 37 iXi(Aj + Aj)?

Hanson-Wright is an exponential concentration bound that can be
used in the specific case — improves boundto m =0 ('°g 1/5)),
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Optimality of Hutchinson’s Method

Them =20 (M) bound given by the Hanson-Wright

inequality is tight.

- Any algorithm that only uses queries of the form x/Ax;
requires Q ("’giil/‘w samples to estimate tr(A) to error
+etr(A) for PSD A [Wimmer, Wu, Zhang 2014].

- We recently showed that using the full power of

matrix-vector queries, one can achieve O (W) queries
for PSD matrices.
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