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- The midterm is the Thursday after break in class.

- I'will hold a review session Monday from 3-4:30pm and Tuesday
in class.

- There is no real quiz this week, but see Weekly Quizzes section
on Moodle for a single question quiz where you can mark if you
attended Sally Dong's job talk for extra credit.
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Last Time:
- Finish up fast low-rank approximation via approximate matrix
multiplication.

- Start on stochastic trace estimation and motivation for
matrix-vector query algorithms.



Last Time:

- Finish up fast low-rank approximation via approximate matrix
multiplication.

- Start on stochastic trace estimation and motivation for
matrix-vector query algorithms.

Today:

- Finish stochastic trace estimation.

- Hutchinson’s estimator and full analysis.

® \Q’ ws T+



The trace of a matrix A € R"™" is the sum of it diagonal entries.

n
tI’(A) = ZA,‘,‘.
=1
When A is diagonalizable (e.g., when it is symmetric) with
eigenvalues A1, ..., Ap, tr(A) = 1L A,

Main question: How many matrix-vector multiplication
“queries” Axq, ..., Axy are required to approximate tr(A)?



Motivating Example
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- Explicitly forming B® and computing tr(B*) takes O(n®) time.

- Can multiply B® by a vector in 3 - |E| = O(n?) operations.

- So a trace estimation algorithm using m queries, yields an

O(m - |E|) time approximate triangle counting algorithm.
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Other Examples

Example 2: Hessian/Jacobian matrix-vector products.
AOXN VB s Hetghon

- For vector x, Vf(y)x and V2f(y)x can often be computed
efficiently using finite difference methods or explicit
differentiation (e.g., via backpropagation).

- Do not need to fully form Vf(y) or V2f(y).

- Many applications of estimating the traces of these matrices,
e.g., in analyzing neural network convergence, in optimization of
score-based methods, etc.

tr(V2f(y)x): Laplacian
- tr(Vf(y)x): Divergence



Other Examples

Example 3: A is a function of another (explicit) matrix B, A = f(B) that
can be applied efficiently via an iterative method.



Other Examples
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Example 3: A is a function of another (explicit) matrix B, A = f(B ) that
can be applied efficiently via an iterative method.
x~N (o, i>

< - Repeated multiplication to apply A = B. i““ ~id AT,
- Conjugate gradient, MINRES, or any linear system solver :t "
A=B". Z FFSD g
pa

- Lanczos method, polynomial/rational approximation:

A = exp(B), A = VB, A = log(B), etc.

- These methods run in n? - C time, where C depends on
properties of B. Typically C < nson?.C< n.



Matrix Function Examples

- Log-likelihood computation in Bayesian optimization,
experimental design. tr(log(B)) = log det(B).~ i (5yCAY)
- Estrada index, a measure of protein folding degree and
more generally, network connectivity. tr(exp(B)).

- Trace inverse, which is important in uncertainty
quantification and many other scientific computing
applications. tr(B~") M 1

- Information about the matrix eigenvalue spectrum, since
tr(f(B)) = Y., f(\;), where \; is B's ith eigenvalue.

- E.g, counting the number of eigenvalues in an interval,
spectral density estimation, matrix norms

- See e.g, [Ubaru, and Saad 2017].



Hutchinson’s Method

Hutchinson 1991, Girard 1987:
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- Draw xq, ..., Xy € R ii.d. with random {41, —1} entries.
* Return T= L3> 1xTAx, as an approximation to tr(A).

+1 -1

+1 +1

-1 +| ...

A g g A
+1 -1
+1 +1

- One of the earliest examples | know of a randomized

algorithm for linear algebraic computation.



Hutchinson’s Method Error Bound

Theorem

Let T be the trace estimate returned by Hutchinson’s method.
Ifm=0 (5‘?) then with probability > 1— 4,

T —tr(A)] < elAllr



Hutchinson’s Method Error Bound

Theorem

Let T be the trace estimate returned by Hutchinson’s method.
If m = 0 (55), then with probability > 1 -,
#(A)
T~ tr(A)] < ellAllr

_ ron—edie varnca
If Ais symmetric positive semidefinite (PSD) then

n n
1Al = (| 3702 < ST = tr(A).
=1 =1

Sofor PSDA:  (T—e)tr(A) < T < (1+ €) tr(A).



Proof Approach

Theorem

Let T be the trace estimate returned by Hutchinson’s method.
Ifm=0 (51?) then with probability > 1— 6,

T - tr(A)] < clAllr

1. Show that E[T] = tr(A).
2. Bound Var[T].
3. Apply Chebyshev's inequality.

1



Proof Approach

Theorem

Let T be the trace estimate returned by Hutchinson’s method.
Ifm=0 (51?) then with probability > 1— 6,

T - tr(A)] < clAllr

————N

1. Show that E[T] = tr(A).
2. Bound Var[T].

-3~ Apply Chebyshev's inequality. o-1r 1 ;J /l\ g
A tighter proof that uses the Hanson-Wright inequality, an

exponential concentration inequality for quadratic forms, can

improve the 6 dependence to log(1/6) — we'll cover this later in
the class.
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Expectation Analysis

Hutchinson’s Estimator::

- Draw Xy, ..., Xy € R Li.d. with random {-+1, =1} entries.
-« Return T= L 5" x/Ax; as an approximation to tr(A).
- )
By linearity of expectation, E[T] = E[x’Ax] for a’single random =1
vector x.

12



Expectation Analysis

Hutchinson’s Estimator::
- Draw Xq, ..., ,Xm € R" i.i.d. with random {+1, —1} entries.

-« Return T= L 5" x[Ax; as an approximation to tr(A).

By linearity of expectation, E[T] = E[x’Ax] for a single random =1

vector x.
(D
EXAX] =E> > xixA; = Z ZAU E[x x|

i=1 j=1 =1 j=1
OF\%)
,,F \~>
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Expectation Analysis

Hutchinson’s Estimator::

- Draw Xq, ..., Xm € R"ii.d. with random {+1,—1} entries.

-« Return T= L 5" x[Ax; as an approximation to tr(A).

m =1

By linearity of expectation, E[T] = E[x’Ax] for a single random =1
vector x.

n o n n o n
E[XTAX] =E Z Z X,‘XjA,‘j = Z ZAU . E[X,‘Xj]

=1 j=1 =1 j=1

- When i # J, x;x; = 1 with probability 1/2 and —1 with probability
1/2, so E[xjxj] = 0. When i = j, xix; = 1, so E[xjx]] = 1.
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Expectation Analysis

Hutchinson’s Estimator::

- Draw Xq, ..., Xm € R"ii.d. with random {+1,—1} entries.

-« Return T= L 5" x[Ax; as an approximation to tr(A).

m =1

By linearity of expectation, E[T] = E[x’Ax] for a single random =1
vector x.

n o n n o n n
E[XTAX] =E Z Z X,‘XjA,‘j = Z ZAU . E[X,‘Xj] = ZA,,'.
i=1

=1 j=1 =1 j=1

- When i # J, x;x; = 1 with probability 1/2 and —1 with probability
1/2, so E[xjxj] = 0. When i = j, xix; = 1, so E[xjx]] = 1.
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Expectation Analysis

. . )., - v - ’ L
Hutchinson’s Estimator:: KK). - X|><) SN =) 0(‘\2»
- Draw Xq, ..., . Xm € R™i.i.d. with random {+1, -1} entries.
- Return T= L 5" xIAx; as an approximation to tr(A)

£+ 63hy) ﬁr(xx A = A (Bl B) o4, (A)

By linearity of expectation, E[T] = E[x’Ax] for a single random =1
vector x.

E[x"Ax] = EZZX,XJAU_ZZAU E[xx] = ZA =4, (A>

i=1 j=1 =1 j=1

- When i # J, x;x; = 1 with probability 1/2 and —1 with probability
1/2, so E[xjxj] = 0. When i = j, xix; = 1, so E[xjx]] = 1.

- So the estimator is correct in expectation: E[T] = tr(A).
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Variance Bound

Hutchinson’s Estimator::

- Draw Xq,..., Xm € R" i.i.d. with random {+1, —1} entries.

« Return T= L7

>, x]Ax; as an approximation to tr(A).
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Variance Bound

Hutchinson’s Estimator::

- Draw Xq,..., Xm € R ii.d. with random {+1, =1} entries.

- ReturnT= 137

>, x]Ax; as an approximation to tr(A).

Var[T] = %Var[XTAX]

13



Variance Bound

Hutchinson’s Estimator::

- Draw Xq,..., Xm € R ii.d. with random {+1, =1} entries.

- ReturnT= 137

>, x]Ax; as an approximation to tr(A).

_ 1 rl n n
Var[T] = P Var[xTAx] - Var ZZXI'X/AU

i=1 j=1
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Variance Bound

Hutchinson’s Estimator::

- Draw Xq,..., Xm € R ii.d. with random {+1, =1} entries.

- Return T= L 37 I

= > _i—1 XjAX; as an approximation to tr(A).

— 1 rl n n
Varl T = 2 Varlx'Ax] = ZoVar | 3, > xixi
=1 j=1
\

Can we apply linearity of variance here?
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Variance Bound

Hutchinson’s Estimator::

- Draw Xq,..., Xm € R ii.d. with random {+1, =1} entries.

- ReturnT= 137

>, x]Ax; as an approximation to tr(A).

_ 1 rl n n
Var[T] = P Var[xTAx] - Var ZZXI'X/AU

=1 j=1
Can we apply linearity of variance here? Almost — need to remove
repeated terms, and then can use pairwise independence.
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Variance Bound

Hutchinson’s Estimator::

- Draw Xq,..., Xm € R ii.d. with random {+1, =1} entries.
- Return T = L 3> x[Ax; as an approximation to tr(A).
L ‘\'n/‘V\(
/ L

— 1 1 n
Var[T] = o VarliAx] = 2o Var |3 Z XiXiAjj
=1 = Ilfbofco.w\‘\ E—Q,J,\\

Can we apply linearity of variance here? Almost - need o remove
_repeated terms, and then can use awvwsgmdependence

/(f\ 7,
Var[T]——Var ZA”+ZZXXJ Ajj + Aji)
=1 j>i

XXy (Aat Hu)
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Variance Bound

Hutchinson’s Estimator::
- Draw Xq,..., Xm € R ii.d. with random {+1, =1} entries.

- Return T = L 3> x[Ax; as an approximation to tr(A).

_ 1 rl n n
Var[T] = P Var[xTAx] - Var ZZXI'X/AU

=1 j=1
Can we apply linearity of variance here? Almost — need to remove
repeated terms, and then can use pairwise independence.

—Var ZA”+ZZXXJ Ajj + Aji)

=1 j>i

fzz@ Sy

=1 j>i l

Var[T]
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Variance Bound
2

Hutchinson’s Estimator::
+ Draw xq, ..., Xm € R" Li.d. with random {+1, =1} entries. :f_ﬁg"— 265

- Return T = L 3> x[Ax; as an approximation to tr(A).

_ 1 rl n n
Var[T] = P Var[xTAx] - Var ZZXI'X/AU

i=1 j=1
Can we apply linearity of variance here? Almost — need to remove
repeated terms, and then can use pairwise independence. M,\H*”"a“'

&‘M)L “
Var[T] = —Var Aii + XiXi(Ajj + Aji) .ﬂ-'\r}
R

f*ZZ /f[x,x, (Aj + Aj) S*ZZZA2+2A2

=1 j>i =1 j>i
A'n‘ "H_,\ “t B\I—; A)‘ 4 & (n') +A)‘> 13



Variance Bound

Hutchinson’s Estimator::
- Draw Xq,..., Xm € R ii.d. with random {+1, =1} entries.

- Return T = L 3> x[Ax; as an approximation to tr(A).

_ 1 rl n n
Var[T] = P Var[xTAx] - Var ZZXI'X/AU

=1 j=1
Can we apply linearity of variance here? Almost — need to remove
repeated terms, and then can use pairwise independence.

Akl
—Var ZA,,—FZZXXJ A+ Aj) &ﬁ\rg/r
20412]

=1 j>i
2
7fZZVar[xx, (Aj + Ai)’ < 222A2+2Af, —
i J>i W >
sl 2Ty 13
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Final Analysis

Hutchinson’s Estimator::

- Draw X, ..., Xm € R"i.i.d. with random {+1,—1} entries.

- Return T= L 5™ xAx; as an approximation to tr(A).

Chebyshev's inequality implies that, for m = %:

——
= 2||All2/m
Pr[[T—tr(A)] = €|l Allf] < W =4
— F
2
met
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Final Analysis

Hutchinson’s Estimator::
- Draw X, ..., Xm € R"i.i.d. with random {+1,—1} entries.

- Return T= L 5™ xAx; as an approximation to tr(A).

T
Chebyshev's inequality implies that, for m = %: X W

T 2||Al/m
Pr[|T—tr(A)] > €|lAllf] < zgﬁ =34.

X% =) Xxe®) Ty Xy 7 )
Could we have gotten a better bound by applying Bernstein’s
inequality to Y71, 370 XiXi(Aj + Aji)?
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Final Analysis

Hutchinson’s Estimator::

- Draw X, ..., Xm € R"i.i.d. with random {+1,—1} entries.

- Return T= L 5™ xAx; as an approximation to tr(A).

Chebyshev's inequality implies that, for m = %:

2||Allz/m

= 4.
eJIAllz

Pr [T — tr(A)] > €[lAllf] <

Could we have gotten a better bound by applying Bernstein’s
inequality to Y71, 370 XiXi(Aj + Aji)?

Hanson-Wright is an exponential concentration bound that can be
used in the specific case - improves boundtom =0 (M)

8
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Optimality of Hutchinson’s Method

Them=0 (M) bound given by the Hanson-Wright

inequality is tight.
- Any algorithm that only uses queries of the form x/-TAx,»
requires Q (M) samples to estimate tr(A) to error

€

+etr(A) for PSD A [Wimmer, Wu, Zhang 2014].
‘ <Ak
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Optimality of Hutchinson’s Method

Them=0 (M) bound given by the Hanson-Wright

€

inequality is tight.

- Any algorithm that only uses queries of the form xTAé,»

requires Q (M) samples to estimate tr(A) to error

€

+etr(A) for PSD A [Wimmer, Wu, Zhang 2014]. HX. .. /—\xﬁ
=

- We recently showed that using the full power of

matrix-vector queries, one can achieve O (M) queries
for PSD matrices.

CHodh 41 /Masse” b
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