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- The midterm is the Thursday after break.

- Tuesday that week | will do midterm review (not cover any new
material).

- Midterm study material will be posted shortly.



Last Time:

- Approximate matrix multiplication via importance sampling.

- Application to fast low-rank approximation via sampling.
Today:

- Finish up fast low-rank approximation.

- Stochastic trace estimation.



Quiz Review
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Quiz Review

Question 5
Not complete

Points out of
1.00

¥ Flag
question

£ Edit

guestion

Consider a version of Count-Sketch where instead of returning the median of our t
independent estimates as the final estimate, we return the estimate which is at the 95th
percentile of the t estimates. How would this change the theoretical bounds for the
algorithm? How do you think it would effect the practical performance?

O a. We are not be able to obtain error ¢|| x|, using this approach.

O b. We could achieve the same error bounds and sketching dimension up to
constants using this approach as compared to using the median. However, the
approach will likely work significantly worse in practice.

O c. We could achieve the same error bounds and sketching dimension up to
constants using this approach as compared to using the median. Further, the
approach will likely work significantly better in practice.

O d. We could obtain the same error bounds using this approach, but would require a
much larger sketching dimension as compared to taking the median. Further, the
approach will likely work significantly worse in practice.

Check



Randomized Low-Rank approximation



Low-rank Approximation

Consider a matrix A € R"*9. We would like to compute an optimal
low-rank approximation of A. l.e,, for R < min(n, d) we would like to
find Z € R™* with orthonormal columns satisfying:

|A—ZZ"Allf = min ||A—ZZ"A||f.
2:717=|
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Z’A

Solving this exactly requires computing the top k left singular vectors
of A'in O(nd?) time. We will give an approximation algorithm running
in O(nd + nk?) time.



Sampling Based Algorithm

Linear Time Low-Rank Approximation:

1Al

- Fix sampling probabilities p4, ..., pn with p; = T

- Selectiy, ..., ir € [n] independently, according to the
distribution Prli; = k] = pj for sample size t > k.

. _ 1 t 1 .
I_et C — ? - Z}:(‘ W .A:‘IJM

- Let Z € R"** consist of the top k left singular vectors of C.

- By our approximate matrix multiplication analysis, if t = 0(5—’;),
[CCT — AAT||¢ < ¢/VR - ||A||? with probability at least 1 — .

- We will use this to show that an optimal basis for C (i.e., Z) is
nearly optimal for A.



Sampling Based Algorithm
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Formal Analysis

Let Z, € R"*F contain the top left singular vectors of A - i.e.
Z. = argmin ||A — ZZ"A||2. Similarly, Z = argmin ||C — ZZ'C||2.

Claim 1: For any orthonormal Z € R™** and any matrix B,
|B —2Z"B||? = tr(BB") — tr(Z'BB'Z).
Claim 2: If [|AAT — CCT||r < ﬁHAHZ, then for any orthonormal
Z € R™R tr(ZT(AAT — CCT)Z) < €||A|1%
Proof from claims:
IC—ZZ'C|? < ||C - 2.ZIC|2 = tr(Z'cC'Z) > tr(Z1cC'Z.)
— tr(Z AATZ) > tr(ZLAATZ,) — 2¢]|A|I2
— A~ ZZ Al < ||A - Z.ZIA|? + 2] A|12



Formal Analysis

Claim 2: If |AAT — CCT||F < SzlIAl7 then for any orthonormal

Z € R™K tr(ZT(AAT — CCTYZ) < €| A2

Suffices to show that for any symmetric B € R"*" and any
orthonormal Z € R"™*®, tr(Z'BZ) < V/k - ||B||f.

tr(Z'BZ) = Z z/Bz;

< Z)\ (By Courant-Fischer theorem)

< VR | SR < VE- || STA(B) = V5]
=1 =1
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More Advanced Techniques

Norm based sampling gives an additive error approximation,
1A —ZZ Al12 < mingzz_ ||A — ZZTA|2 + 2¢||A|I2.

- Ideally, we would like a relative error approximation,
|4 =ZZ Al < (1+ €) - mingziz-) 1A — ZZ7AI2.

- This can be achieved with more advanced non-uniform
sampling techniques, based on leverage scores or adaptive
sampling.

- Also possible using Johnson-Lindenstrauss type random
projection.

- We will cover these techniques in future classes.

n



Stochastic Trace Estimation



The trace of a matrix A € R"*" is the sum of it diagonal entries.

n
tr(A) = Z Aii.
i=1

When A is diagonalizable (e.g., when it is symmetric) with
eigenvalues Ay, ..., Ap, tr(A) = 37, A

How many operations does it take to compute tr(A) given
explicit access to A?
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Implicit Trace Estimation

- Given implicit access to A € R"*" through matrix-vector
multiplication.

- Goal is to approximate tr(A) = >, Aj;.

A A X, A

Main question: How many matrix-vector multiplication “queries”
AXq, ..., Axpy are required to approximate tr(A)?

Algorithms in this model are called matrix-free methods. Useful
when A is not given explicitly, but we have an efficient algorithm for
multiplying A by a vector (examples to come).
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Naive Exact Algorithm

Naive solution:

- Setxj=ejfori=1,...,n.
* Return tr(A) = YL, x/Ax;.

Returns exact solution, but requires n matrix-vector multiplies.

We will see how to use m < n multiplies by using randomness
and allowing for small approximation error.
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Motivating Example

The number of triangles or other small ‘motifs’ is an important
metric of network connectivity. E.g,, important in computing
the network clustering coefficient

How long does it take to exactly compute the number of
triangles in the graph?
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Motivating Example

Can use the adjacency matrix B € {0,1}"*" to write the number of
triangles in a linear algebraic way.

- Bj indicates the number of 1-step paths (edges) from i,
- [B?];j indicates the number of 2-step paths from i,
- [B];j indicates the number of 3-step paths from i,j

Bji is the number of length 3-paths from i back to i. Thus,

1 .
6tr(B3) = # triangles. 16



Motivating Example

B3
0 1 4 2 1
1 2 6 5 2
4 6 4 6

1 .
: tr(B®) = # triangles.

- Explicitly forming B* and computing tr(B?) takes O(n?) time.
- Can multiply B® by a vector in 3 - |E| = O(n?) operations.

- So a trace estimation algorithm using m queries, yields an
O(m - |E]) time approximate triangle counting algorithm.



