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- Problem Set 2 is due tonight at 11:59pm.
- One page project proposal due Tuesday 3/12.
- Quiz due Monday released after class.



Last Time:

- Count sketch for ¢, heavy-hitters — estimate all entries of a
vector x to error +e¢||x||; from a linear sketch of dimension

0 ().

- Analysis via linearity of expectation, variance, Chebyshev's
inequality and median trick.

Today:

- Approximate matrix multiplication via importance sampling.

- Application to fast low-rank approximation via sampling.



Approximate Matrix Multiplication



Matrix Multiplication Problem

Given A, B € R™" would like to compute C = AB. Requires n¥
time where w = 2.373 in theory.

- We'll see how to compute an approximation in O(n?) time
via a simple sampling approach.

- This is one of the fundamental building blocks of
randomized numerical linear algebra.

- E.g later in class we will use it to develop a fast algorithm
for low-rank approximation.



Outer Product View of Matrix Multiplication

Inner Product View: [AB]; = (A ., B;.) 1A - B

=k
Outer Product View: Observe that C, = A. xB.. IS an n x n matrix with

[Celij = Ajk - Bj- SO AB = 34 A. Bk

Y | N

Basic Idea: Approximate AB by sampling terms of this sum.



Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p1, ..., p, with p; > 0 and Z[ﬂ] pi=1

- Select iy, ..., ik € [n] independently, according to the
distribution Pr[ij = k] =

- letC=1. Z,wp A B,

Claim 1: E[C] =

—~

n

t t
. 1 1 1
E[C]:E E E[pl lJ IJ] 7% E pka kBk E AB = AB
=1 i j:1

j=1 k=1

Weighting by ﬁ keeps the expectation correct. Key idea behind
importance safnpling based methods.



Optimal Sampling Probabilities

Claim 2 E[[|AB — C|F < 1 yp_, MnllBn.l,

Good exercsie — uses linearity of variance. | may ask you to prove it
on the next problem set.

Question: How should we set p4,...,p, to minimize this error?
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By the Cauchy-Schwarz inequality,
S Az 1Bl < /S A
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Overall: E[|AB — C|j] < LALEIBIE 7



Approximate Matrix Multiplication Variance

So far: With optimal sampling probabilities approximate matrix
multiplication satisfies E[||AB — C|[2] < LAIEIEL:

- Settingt =

Zf, by Markov's inequality:

Pr[||AB — Cl[r > € [|Allr - [|B]lF] < 6.

- Note: Its not so obvious how to improve the dependence on §
here, but it can be done using more advanced concentration
inequalities.



AMM Upshot

Upshot: Sampling t = O(1/¢?) columns/rows of A, B with
probabilities proportional to ||A. |2 - ||Br,.||> yields, with good
probability, an approximation C with

1AB = Tlle < e |Alle - 1Bl

- Probabilities take O(n?) time to compute. After sampling, C
takes O(t - n?) time to compute.

- Can derive related bounds when probabilities are just

. . A. -||Bg..
approximate — .e. pp > (- % for some 8 > 0.

- Can also give bounds on [|AB — C||,, but analysis is much more
complex. Will see tools in the coming weeks that let us do this.

- A classic example of using weighted importance sampling to
decrease variance and in turn, sample complexity.



AMM Upshot

Think-Pair-Share 1: Ideally we would have relative error,
|IAB — C||r < €||/AB||r. Could we get this via a tighter analysis or
better sampling distribution?
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Randomized Low-Rank approximation



Low-rank Approximation

Consider a matrix A € R"*9. We would like to compute an optimal
low-rank approximation of A. l.e,, for R < min(n, d) we would like to
find Z € R™* with orthonormal columns satisfying:

|A—ZZ"Allf = min ||A—ZZ"A||f.
2:717=|

Why is rank(ZZ'A) < k?

nxd nxk nxd
Z’A
A = V4
Why does it suffice to consider low-rank approximations of this n

faorm? Eor any R with rank(R) — bk lot 7 Xk he an arthonormal



Sampling Based Algorithm

We will analysis a simple non-uniform sampling based algorithm for
low-rank approximation, that gives a near optimal solution in
O(nd + nk?) time.

Linear Time Low-Rank Approximation:

- Fix sampling probabilities pq, ..., p, with p; = ”\T\/:ili\!%'
- Select iy, ..., it € [n] independently, according to the

distribution Pr[ij = k] = p, for sample size t > k.
. 1 t 1 .
letC=1-3/, N A

- Let Z € R"™** consist of the top k left singular vectors of C.

Will use that CC" is a good approximation to the matrix product AAT.

12



Sampling Based Algorithm

nxd nxt nxKk

N
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Sampling Based Algorithm Approximation Bound

Theorem

The linear time low-rank approximation algorithm run with
= f samples outputs Z € R"** satisfying with probability at
least 1—0:

=T
A—ZZ All2< min ||A = ZZ"A||Z + 2¢||All%.
| IIFfZgIZLII lIF + 2el|All7

Key Idea: By the approximate matrix multiplication result applied to
the matrix product AAT, with probability > 1— 4,

44T = CCTlr < == Al - |l = ﬁuAu%
Since CC" is close to AAT, the top eigenvectors of these matrices (i.e.
the top left singular vectors of A and C will not be too different.) So Z
can be used in place of the top left singular vectors of A to give a

near optimal approximation.
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Formal Analysis

Let Z, € R"*F contain the top left singular vectors of A - i.e.
Z. = argmin ||A — ZZ"A||2. Similarly, Z = argmin ||C — ZZ'C||2.

Claim 1: For any orthonormal Z € R™** and any matrix B,
|B —2Z"B||? = tr(BB") — tr(Z'BB'Z).
Claim 2: If [|AAT — CCT||r < ﬁHAHZ, then for any orthonormal
Z € R™R tr(ZT(AAT — CCT)Z) < €||A|1%
Proof from claims:
IC—ZZ'C|? < ||C - 2.ZIC|2 = tr(Z'cC'Z) > tr(Z1cC'Z.)
— tr(Z AATZ) > tr(ZLAATZ,) — 2¢]|A|I2
— A~ ZZ Al < ||A - Z.ZIA|? + 2] A|12
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