
COMPSCI 614: Randomized Algorithms with
Applications to Data Science

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2024.
Lecture 10

1



Logistics

• Problem Set 2 is due tonight at 11:59pm.
• One page project proposal due Tuesday 3/12.
• Quiz due Monday released after class.
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Summary

Last Time:

• Count sketch for ℓ2 heavy-hitters – estimate all entries of a
vector x to error ±ϵ∥x∥2 from a linear sketch of dimension
O
(

log(1/δ)
ϵ2

)
.

• Analysis via linearity of expectation, variance, Chebyshev’s
inequality and median trick.

Today:

• Approximate matrix multiplication via importance sampling.

• Application to fast low-rank approximation via sampling.
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Approximate Matrix Multiplication

3



Matrix Multiplication Problem

Given A,B ∈ Rn×n would like to compute C = AB. Requires nω

time where ω ≈ 2.373 in theory.

• We’ll see how to compute an approximation in O(n2) time
via a simple sampling approach.

• This is one of the fundamental building blocks of
randomized numerical linear algebra.

• E.g. later in class we will use it to develop a fast algorithm
for low-rank approximation.
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Outer Product View of Matrix Multiplication

Inner Product View: [AB]ij = ⟨Ai,:,Bj,:⟩ =
∑n

k=1 Aik · Bkj.

Outer Product View: Observe that Ck = A:,kBk,: is an n× n matrix with
[Ck]ij = Ajk · Bkj. So AB =

∑n
k=1 A:,kBk,:

Basic Idea: Approximate AB by sampling terms of this sum.
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Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

• Fix sampling probabilities p1, . . . ,pn with pi ≥ 0 and
∑

[n] pi = 1.

• Select i1, . . . , it ∈ [n] independently, according to the
distribution Pr[ij = k] = pk.

• Let C = 1
t ·
∑t

j=1
1
pij

· A:,ijBij,:.

Claim 1: E[C] = AB

E[C] = 1
t

t∑
j=1

E

[
1
pij

· A:,ijBij,:

]
=

1
t

t∑
j=1

n∑
k=1

pk·
1
pk

·A:,kBk,: =
1
t

t∑
j=1

AB = AB

Weighting by 1
pij

keeps the expectation correct. Key idea behind
importance sampling based methods.
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Optimal Sampling Probabilities

Claim 2: E[∥AB− C∥2F] ≤ 1
t
∑n

m=1
∥A:,m∥2

2·∥Bm,:∥2
2

pm .

Good exercsie – uses linearity of variance. I may ask you to prove it
on the next problem set.

Question: How should we set p1, . . . ,pn to minimize this error?

Set pm =
∥A:,m∥2·∥Bm,:∥2∑n
k=1 ∥A:,k∥2·∥Bk,:∥2

, giving:

E[∥AB− C∥2F] ≤
1
t

n∑
m=1

∥A:,m∥2 · ∥Bm,:∥2 ·

( n∑
k=1

∥A:,k∥2 · ∥Bk,:∥2

)

=
1
t

( n∑
m=1

∥A:,k∥2 · ∥Bk,:∥2

)2

By the Cauchy-Schwarz inequality,∑n
m=1 ∥A:,k∥2 · ∥Bk,:∥2 ≤

√∑n
m=1 ∥A:,k∥22 ·

√∑n
m=1 ∥Bk,:∥22 = ∥A∥F · ∥B∥F

Overall: E[∥AB− C∥2F] ≤
∥A∥2

F·∥B∥
2
F

t .
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Approximate Matrix Multiplication Variance

So far: With optimal sampling probabilities, approximate matrix
multiplication satisfies E[∥AB− C∥2F] ≤

∥A∥2
F·∥B∥

2
F

t .

• Setting t = 1
ϵ2
√
δ
, by Markov’s inequality:

Pr[∥AB− C∥F ≥ ϵ · ∥A∥F · ∥B∥F] ≤ δ.

• Note: Its not so obvious how to improve the dependence on δ

here, but it can be done using more advanced concentration
inequalities.
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AMM Upshot

Upshot: Sampling t = O(1/ϵ2) columns/rows of A,B with
probabilities proportional to ∥A:,k∥2 · ∥Bk,:∥2 yields, with good
probability, an approximation C with

∥AB− C∥F ≤ ϵ · ∥A∥F · ∥B∥F.

• Probabilities take O(n2) time to compute. After sampling, C
takes O(t · n2) time to compute.

• Can derive related bounds when probabilities are just
approximate – i.e. pk ≥ β · ∥A:,k∥2·∥Bk,:∥2∑n

m=1 ∥A:,m∥2·∥Bm,:∥2
for some β > 0.

• Can also give bounds on ∥AB− C∥2, but analysis is much more
complex. Will see tools in the coming weeks that let us do this.

• A classic example of using weighted importance sampling to
decrease variance and in turn, sample complexity.
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AMM Upshot

Think-Pair-Share 1: Ideally we would have relative error,
∥AB− C∥F ≤ ϵ∥AB∥F. Could we get this via a tighter analysis or
better sampling distribution?
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Randomized Low-Rank approximation
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Low-rank Approximation

Consider a matrix A ∈ Rn×d. We would like to compute an optimal
low-rank approximation of A. I.e., for k ≪ min(n,d) we would like to
find Z ∈ Rn×k with orthonormal columns satisfying:

∥A− ZZTA∥F = min
Z:ZTZ=I

∥A− ZZTA∥F.

Why is rank(ZZTA) ≤ k?

Why does it suffice to consider low-rank approximations of this
form? For any B with rank(B) = k, let Z ∈ Rn×k be an orthonormal
basis for B’s column span. Then ∥A− ZZTA∥F ≤ ∥A− B∥F. So

min
Z:ZTZ=I

∥A− ZZTA∥F = min
B:rank B=k

∥A− B∥F.

How would one compute the optimal basis Z? Compute the top k
left singular vectors of A, which requires O(nd2) time, or O(ndk) time
for a high accuracy approximation with an iterative method.
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Sampling Based Algorithm

We will analysis a simple non-uniform sampling based algorithm for
low-rank approximation, that gives a near optimal solution in
O(nd+ nk2) time.

Linear Time Low-Rank Approximation:

• Fix sampling probabilities p1, . . . ,pn with pi =
∥A:,i∥2

2
∥A∥2

F
.

• Select i1, . . . , it ∈ [n] independently, according to the
distribution Pr[ij = k] = pk for sample size t ≥ k.

• Let C = 1
t ·
∑t

j=1
1√pij

· A:,ij .

• Let Z ∈ Rn×k consist of the top k left singular vectors of C.

Will use that CCT is a good approximation to the matrix product AAT.
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Sampling Based Algorithm
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Sampling Based Algorithm Approximation Bound

Theorem
The linear time low-rank approximation algorithm run with
t = k

ϵ2·
√
δ
samples outputs Z ∈ Rn×k satisfying with probability at

least 1− δ:

∥A− ZZTA∥2F ≤ min
Z:ZTZ=I

∥A− ZZTA∥2F + 2ϵ∥A∥2F.

Key Idea: By the approximate matrix multiplication result applied to
the matrix product AAT, with probability ≥ 1− δ,

∥AAT − CCT∥F ≤
ϵ√
k
· ∥A∥F · ∥AT∥F =

ϵ√
k
∥A∥2F.

Since CCT is close to AAT, the top eigenvectors of these matrices (i.e.
the top left singular vectors of A and C will not be too different.) So Z
can be used in place of the top left singular vectors of A to give a
near optimal approximation.
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Formal Analysis

Let Z∗ ∈ Rn×k contain the top left singular vectors of A – i.e.
Z∗ = argmin ∥A− ZZTA∥2F. Similarly, Z = argmin ∥C− ZZTC∥2F.

Claim 1: For any orthonormal Z ∈ Rn×k, and any matrix B,

∥B− ZZTB∥2F = tr(BBT)− tr(ZTBBTZ).

Claim 2: If ∥AAT − CCT∥F ≤ ϵ√
k
∥A∥2F, then for any orthonormal

Z ∈ Rn×k, tr(ZT(AAT − CCT)Z) ≤ ϵ∥A∥2F.

Proof from claims:

∥C− ZZTC∥2F ≤ ∥C− Z∗ZT∗C∥2F =⇒ tr(ZTCCTZ) ≥ tr(ZT∗CCTZ∗)

=⇒ tr(ZTAATZ) ≥ tr(ZT∗AATZ∗)− 2ϵ∥A∥2F
=⇒ ∥A− ZZTA∥2F ≤ ∥A− Z∗ZT∗A∥2F + 2ϵ∥A∥2F.
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