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- Problem Set 2 is due tonight at 11:59pm.
{ One page project proposal due Tuesday 3/12.
- Quiz due Monday released after class.



Last Time:

- Count sketch for ¢, heavy-hitters - estimate all entries of a

vector x to error +el|x||; from a linear sketch of dimension
0 log(1/6
7= ).

E/-\nalysis via linearity of expectation, variance, Chebyshev’s

inequality and median trick.
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Last Time:

- Count sketch for ¢, heavy-hitters — estimate all entries of a
vector x to error +el|x||; from a linear sketch of dimension

0 ().

€

- Analysis via linearity of expectation, variance, Chebyshev's
inequality and median trick.

Today:

- Approximate matrix multiplication via importance sampling.
R
- Application to fast low-rank approximation via sampling.



Approximate Matrix Multiplication



Matrix Multiplication Problem

Given A, B € R™" would like to compute C = AB. Requires n¥
time where w = 2.373 in theory.

- We'll see how to compute an approximation in O(n?) time
via a simple sampling approach.

- This is one of the fundamental building blocks of
randomized numerical linear algebra.

- E.g. later in class we will use it to develop a fast algorithm
for low-rank approximation.



Outer Product View of Matrix Multiplication

Inner Product View: [AB]; = (A;.,B;.) 1 Aik - Bgj.

=%
Outer Product View: Observe that C, = A. ;B is an n x n matrix with
[Celij = Ak - Brj- SO AB = D31 A, cBk.

Basic Idea: Approximate AB by sampling terms of this sum.



Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities pq, ..., p, with p; > 0 and Z[n] pi=1.

- Selectiq, ..., it € [n] independently, according to the
distribution Prl[ij = k] =

letC=1.20 1A B
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- Select iy, ..., iy € [n] independently, according to the
distribution Prlij = k] = py.

cletC=1-%, Jﬁ A By
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Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities pq, ..., p, with p; > 0 and Z[n] pi=1.

- Selectiq, ..., it € [n] independently, according to the
distribution Prl[ij = k] =

letC=1.20 1A B

Claim 1: E[C] =
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Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM): Poi s Pan )
L .

- Fix sampling probabilities pq, ..., p, with p; > 0 and Z[n] pi=1.

- Select iy, ..., iy € [n] independently, according to the
distribution Prlij = k] = py.

Claim 1: E[C] = AB

E[C] = %ZE [;I 'Ai,ijBijv5‘| - lzkzp 'é'A:Jere,:
J=1 J J=1 k=1
o \—\_,_/-\/—\,/
"7 A > AR/
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Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities pq, ..., p, with p; > 0 and Z[n] pi=1.

- Select iy, ..., iy € [n] independently, according to the
distribution Prlij = k] = py.

cletC=1-%, Jﬁ A By

Claim 1: E[C] = AB
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Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities pq, ..., p, with p; > 0 and Z[n] pi=1.

- Selectiq, ..., it € [n] independently, according to the
distribution Prl[ij = k] =

letC=1.20 1A B
Claim 1: E[C] =
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Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities pq, ..., p, with p; > 0 and Z[n] pi=1.

- Selectiq, ..., it € [n] independently, according to the
distribution Prl[ij = k] =

letC=1.20 15 A

[
jr

Claim 1: E[C] = AB

n

t t
_ 1 1 1
E[C]:E§ E[pl Lij |J‘| EE Pfe*Afere E AB = AB
=1 j j=1

—

]:‘\ k=1

Weighting by pi keeps the expectation correct. Key idea behind

importance sampling based methods.
—ROTTINRE SATIPHTS



Optimal Sampling Probabilities

Claim 2: E[||AB — CJj < 1327 _, Lol lu

Pm
Good exercsie — uses linearity of variance. | may ask you to prove it
on the next problem set.




Optimal Sampling Probabilities
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Good exercsie — uses linearity of variance. | may ask you to prove it —

on the next problem set. \I‘J:\Ij:. v iPl z |
Question: How should we set p4, ..., p, to minimize this error?
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Optimal Sampling Probabilities

_ 4 v
Claim 2: E[JAB - C||7] < 137, _, [AlilBulls

Good exercsie — uses linearity of variance. | may ask you to prove it
on the next problem set.

Question: How should we set p4, ..., p, to minimize this error?
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Optimal Sampling Probabilities
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Claim 2: E[||AB — C|7] <

Good exercsie — uses linearity of variance. | may ask you to prove it
on the next problem set.

Question: How should we set p4, ..., p, to minimize this error?
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Optimal Sampling Probabilities

Claim 2: E[||AB - C||}] < 137, lIA: m”z WAl 1B 1

Good exercsie — uses linearity of variance. | may ask you to prove it
on the next problem set.

Question: How should we set p4, ..., p, to minimize this error?

— Al lBoille  Giving:
SELPm = s~ . o SVING:

B ,I n n
E[||AB - C||7] < {Z 1A mll2 - |Bm,:|l2 - (Z 1A kll2 - ||Bfe,:2)
m=1 k=1
n 2
(Z (1A kll2 - ||Bie,:||2>
m=1

By the Cauchy-Schwarz inequality,
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Optimal Sampling Probabilities

Claim 2: E[[]AB — €7 < 130, PenlilBn

Good exercsie — uses linearity of variance. | may ask you to prove it
on the next problem set.

Question: How should we set p4, ..., p, to minimize this error?

Aenllo Bl oo
ST A8 TR S1VINS:

B 1 n n
E[||AB — C|[F] < i > Al - 11Bmll2 - (Z 1A kll2 - IIBfe,:z)
m=1 k=1

n 2
(Z (1A kll2 - ||Bie,:||2>
m=1

By the Cauchy-Schwarz inequality,
S WAkl 1Brclle < o/ Simer Akl - /S B2 = 1Al - 1B

Set py, =
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Overall: E[||AB — C||F] <



Approximate Matrix Multiplication Variance

So far: With optimal sampling probab|l|t|es approximate matrix
multiplication satisfies E[[|AB — C|[2] < LAIE1BIE



Approximate Matrix Multiplication Variance

So far: With optimal sampling probabilitiezs, apz)proximate matrix
multiplication satisfies E[||AB — C||] < JALEIBIE

- Setting t = %’3 by Markov's inequality:
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Approximate Matrix Multiplication Variance

So far: With optimal sampling probab|l|t|es approximate matrix
multiplication satisfies E[[|AB — C|[2] < LAIE1BIE

- Setting t = 62;,.3., by Markov's inequality:

Pr{||AB — Cllr > ¢ [[Allr - [IBllF] <.

- Note: Its not so obvious how to improve the dependence on §
here, but it can be done using more advanced concentration

inequalities.  __ {'hcu\r\oqeés an)

1. z(l/a)



AMM Upshot

Upshot: Sampling t = O(1/€?) columns/rows of A, B with
probabilities proportional to [|A. k|2 - ||Bk,.||> yields, with good
probability, an approximation C with

1AB = Tlle < e Alle - IB)r-
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probabilities proportional to [|A. k|2 - ||Bk,.||> yields, with good
probability, an approximation C with

148 — Tl < e 1Al - IBIlr.

- Probabilities take O(n?) time to compute. After sampling, C
takes O(t - n?) time to compute.
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Upshot: Sampling t = O(1/€?) columns/rows of A, B with
probabilities proportional to [|A. k|2 - ||Bk,.||> yields, with good
probability, an approximation C with

1AB = Tlle < e Alle - IB)r-

- Probabilities take O(n?) time to compute. After sampling, C
takes O(t - n?) time to compute.

- Can derive related bounds when probabilities are just
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AMM Upshot

Upshot: Sampling t = O(1/€?) columns/rows of A, B with
probabilities proportional to [|A. k|2 - ||Bk,.||> yields, with good
probability, an approximation C with

[AB —Cllr < e- [[AllF - [IB]|F-

- Probabilities take O(n?) time to compute. After sampling, C
takes O(t - n?) time to compute.

- Can derive related bounds when probabilities are just

. . A -||Bkg.-
approximate - i.e. p, > 3 - % for some 8 > 0.

- Can also give bounds on ||AB — C||,, but analysis is much more
complex. Will see tools in the coming weeks that let us do this.
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AMM Upshot

Upshot: Sampling t = O(1/€?) columns/rows of A, B with
probabilities proportional to [|A. k|2 - ||Bk,.||> yields, with good
probability, an approximation C with

[AB —Cllr < e- [[AllF - [IB]|F-

- Probabilities take O(n?) time to compute. After sampling, C
takes O(t - n?) time to compute.
- Can derive related bounds when probabilities are just

. . A -||Bkg.-
approximate - i.e. p, > 3 - % for some 8 > 0.

- Can also give bounds on ||AB — C||,, but analysis is much more
complex. Will see tools in the coming weeks that let us do this.

- A classic example of using weighted imyortancw@g to
decrease variance and in turn, sample complexity.



AMM Upshot

WAl < 1A Bl =

Think-Pair: S@\%ﬁ ”El]fiea y we would have relative error,
|AB — C||F < eU}ABHF_Cou d we get this via a tighter analysis or
better sampling distribution?
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Randomized Low-Rank approximation



Low-rank Approximation

Consider a matrix A € R"*. We would like to compute an optimal
low-rank approximation of A. lL.e,, for k < min(n, d) we would like to
find Z € R™* with orthonormal columns satisfying:

4= 2Z'Alls = min 1A~ ZZ7A]
59 padien o o 2
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Low-rank Approximation

Consider a matrix A € R"*. We would like to compute an optimal
low-rank approximation of A. lL.e,, for k < min(n, d) we would like to

find Z € R™* with orthonormal columns satisfying:
nxé n*(‘. \ j

T _ . o T -
|A~2Z'Allr = min A ]Lzz Alr. 2= fyy
4 — C nx
Why is rank(ZZ"A) < k? ZelR J
st 2%2=T <
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Low-rank Approximation

Consider a matrix A € R"*. We would like to compute an optimal
low-rank approximation of A. lL.e,, for k < min(n, d) we would like to
find Z € R™* with orthonormal columns satisfying

|A—ZZTAllf = min ||A—ZZ"A|r.
7:.77=I
Why is rank(ZZ7A) < k?

nxd nxk wxd

Z’A
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Low-rank Approximation

Consider a matrix A € R"*. We would like to compute an optimal
low-rank approximation of A. lL.e,, for k < min(n, d) we would like to
find Z € R™* with orthonormal columns satisfying:

|A—ZZTAllf = min ||A—ZZ"A|r.
i 2:777=I

Why is rank(ZZ7A) < k? mn Al

3'MHE}$|L
Why does it suffice to consider low-rank approximations of this
form?
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Low-rank Approximation

Consider a matrix A € R"*. We would like to compute an optimal
low-rank approximation of A. lL.e,, for k < min(n, d) we would like to
find Z € R™* with orthonormal columns satisfying:

|A=ZZ"Allf = min ||A—ZZ"A|r.
- 2:777=I
Why is rank(ZZ7A) < k?

Why does it suffice to consider low-rank approximations of this
form? For any B with rank(B) = k, let Z € Rk be an orthonormal
basis for B's column span. Then ||A — ZZ"A||r < ||A — B|r. So

min |[A=ZZ"Alr= min ||A— B
2:777=I B:rank B=R
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Low-rank Approximation

Consider a matrix A € R"*. We would like to compute an optimal
low-rank approximation of A. lL.e,, for k < min(n, d) we would like to
find Z € R™* with orthonormal columns satisfying:

|A—ZZTAllr = min ||A—ZZ"A|r.
2:777=I
4
Why is rank(ZZ7A) < k?

Why does it suffice to consider low-rank approximations of this
form? For any B with rank(B) = k, let Z € Rk be an orthonormal
basis for B's column span. Then ||A — ZZ"A||r < ||A — B|r. So

min |[A=ZZ"Alr= min ||A— B
2:777=I B:rank B=R

How would one compute the optimal basis Z7?
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Low-rank Approximation

Consider a matrix A € R"*. We would like to compute an optimal
low-rank approximation of A. lL.e,, for k < min(n, d) we would like to
find Z € R™* with orthonormal columns satisfying:

|A—ZZTAllr = min ||A—ZZ"A|r.
2:777=I
Why is rank(ZZ7A) < k?

Why does it suffice to consider low-rank approximations of this
form? For any B with rank(B) = k, let Z € Rk be an orthonormal

basis for B's column span. Then ||A — ZZ"A||r < ||A — B|r. So
getws
o min ||[A—ZZ"Alr= min ||A—B|.
A2 z2.777=1 B:rank B=R
How would one compute the optimal basis Z? Compute the top k
left singular vectors of A, which requires O(nd?) time, or O(ndk) time

for a high accuracy approximation with an iterative method.

O( A r\\/\l>
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Sampling Based Algorithm

We will analysis a simple non-uniform sampling based algorithm for
low-rank approximation, that gives a near optimal solution in
O(nd + nk?) time.

12



Sampling Based Algorithm

We will analysis a simple non-uniform sampling based algorithm for
low-rank approximation, that gives a near optimal solution in
O(nd + nk?) time.

Linear Time Low-Rank Approximation:

2
A illy
HAH2 ’

- Fix sampling probabilities p1,. .., py with p; =

- Select iy, ..., it € [n] independently, according to the
distribution Prl[i; = k] = pj for sample size t > k.

. 1 t 1
LetC—f~2j:1W-A i

- letZ e Rk consist of the top k left singular vectors of C.
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Sampling Based Algorithm

We will analysis a simple non-uniform sampling based algorithm for
low-rank approximation, that gives a near optimal solution in
O(nd + nk?) time.

Linear Time Low-Rank Approximation:

2
A illy
HAH2 ’

- Fix sampling probabilities p1,. .., py with p; =

- Select iy, ..., it € [n] independently, according to the
distribution Prli; = k] = pj for sample size t > fel.

- Let C= ANANAA ; i L A, Az P

! T h VP"L \Iﬁ
- Let Z € R"™** consist of the top k | éft smgu ar veltors of C.

Will use that CC" is a good approximation to the matrix product AA”.

12



Sampling Based Algorithm

nxd nxt nxk

N

TSlaton  anl o
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Sampling Based Algorithm Approximation Bound

Theorem

The linear time low-rank approximation algorithm run with
= ﬁg samples outputs Z € R"** satisfying with probability at
least 1 — o:

=T
A—ZZ AllZ< min [|A — ZZTA||% + 2¢||All2.
[ ”F_Z:ZmT'Zn:I” IF + 2el|AllF

14



Theorem

The linear time low-rank approximation algorithm run with
= ffg samples outputs Z € R"** satisfying with probability at
least 1 — o:

=T
A—ZZ AllZ< min [|A — ZZTA||% + 2¢||All2.
[ ”F_Z:ZmT'Zn:I” IF + 2el|AllF

Key Idea: By the approximate matrix multiplication result applied to
the matrix product AAT, with probability > 1— 4,

[y /}ccTnF < ﬂ Al AT = %HAH%-
+
.
Z | | _
'\' ! 2 \[ﬁ ‘) -

Sampling Based Algorithm Approximation Bound

14



Sampling Based Algorithm Approximation Bound

Theorem

The linear time low-rank approximation algorithm run with
= f samples outputs Z € R"** satisfying with probability at
least 1 - 6:

=T
A—ZZ AllZ< min [|A — ZZTA||% + 2¢||All2.
[ ”F_Z:ZmT'Zn:I” IF + 2el|AllF

Key Idea: By the approximate matrix multiplication result applied to
the matrix product AAT, with probability > 1— 4,

oA = <l < = Al Tl = il
Since CC" is close to AAT, the top eigenvectors of these matrices (i.e.
the top left singular vectors of A and C will not be too different.) So Z
can be used in place of the top left singular vectors of A to give a

near optimal approximation.
14



Formal Analysis

Let Z, € R"*F contain the top left singular vectors of A - i.e.
Z,. = argmin ||A — ZZ'A||Z. Similarly, Z = arg min ||C — ZZ'C||2.
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Formal Analysis

Let Z, € R"*F contain the top left singular vectors of A - i.e.
Z,. = argmin ||A — ZZ'A||Z. Similarly, Z = arg min ||C — ZZ'C||2.

Claim 1: For any orthonormal Z € R"** and any matrix B,

|B —ZZ"B||# = tr(BB") — tr(Z'BB'Z).
v—/\/\/

IAllf = 4-(a) )
ezl WerT(® 238 )
(o8 AT BY BB T ?iv;v;‘%:?j

/)
oo 68 4 (7889 4o (o)l
1(we )t @B B
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Formal Analysis

Let Z, € R"*F contain the top left singular vectors of A - i.e.
Z,. = argmin ||A — ZZ'A||Z. Similarly, Z = arg min ||C — ZZ'C||2.

Claim 1: For any orthonormal Z € R"** and any matrix B,
|B —ZZ"B||# = tr(BB") — tr(Z'BB'Z).

Claim 2: If ||AAT — CCT||F < ﬁHAHZ, then for any orthonormal
7 € Rk tr(ZT(AAT — CCTYZ) < €||A|1%
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Formal Analysis

Let Z, € R"*F contain the top left singular vectors of A - i.e.
Z,. = argmin ||A — ZZ'A||Z. Similarly, Z = arg min ||C — ZZ'C||2.

Claim 1: For any orthonormal Z € R"** and any matrix B,
|B —ZZ"B||# = tr(BB") — tr(Z'BB'Z).

Claim 2: If ||AAT — CCT||F < ﬁHAHZ, then for any orthonormal
7 € Rk tr(ZT(AAT — CCTYZ) < €||A|1%

Proof from claims:
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Formal Analysis

Let Z, € R"*F contain the top left singular vectors of A - i.e.
Z,. = argmin ||A — ZZ'A||Z. Similarly, Z = arg min ||C — ZZ'C||2.

Claim 1: For any orthonormal Z € R"** and any matrix B,
|B —ZZ"B||# = tr(BB") — tr(Z'BB'Z).

Claim 2: If ||AAT — CCT||F < ﬁHAHZ, then for any orthonormal
7 € Rk tr(ZT(AAT — CCTYZ) < €||A|1%

Proof from claims:

IC—ZZ'c|? < ||C - 2,Z°C|? = tr(Z'cC'Z) > tr(ZCC'Z,)
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Formal Analysis

Let Z, € R"*F contain the top left singular vectors of A - i.e.
Z,. = argmin ||A — ZZ'A||Z. Similarly, Z = arg min ||C — ZZ'C||2.

Claim 1: For any orthonormal Z € R"** and any matrix B,

|B —ZZ"B||# = tr(BB") — tr(Z'BB'Z).

JE—

Claim 2: If ||AAT — CCT||F < ﬁHAHZ, then for any orthonormal
7 € Rk tr(ZT(AAT — CCTYZ) < €||A|1%

Proof from claims:
IC—ZZ'C|p < ||C — 2.Z7C|)} = tr(Z'cC'Z) > tr(Z]CCTZ.)
— tr(Z AATZ) > tr(Z1AATZ,) — 2 A2

15



Formal Analysis

Let Z, € R"*F contain the top left singular vectors of A - i.e.
Z,. = argmin ||A — ZZ'A||Z. Similarly, Z = arg min ||C — ZZ'C||2.

Claim 1: For any orthonormal Z € R"** and any matrix B,
|B —ZZ"B||# = tr(BB") — tr(Z'BB'Z).

Claim 2: If ||AAT — CCT||F < ﬁ\\AHZ, then for any orthonormal
7 € Rk tr(ZT(AAT — CCTYZ) < €||A|1%

Proof from claims:
IC—ZZ'C|p < ||C — 2.Z7C|)} = tr(Z'cC'Z) > tr(Z]CCTZ.)
— tr(Z AATZ) > tr(Z1AATZ,) — 2 A2

— ||A—ZZ A|]? SW—F%HAH%.
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