COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Spring 2020.
Lecture 8
tinyurl.com/musco2020

LOGISTICS

- Problem Set 1 was due this past Friday. Will be graded by next week.
- Problem Set 2 to be released end of this week and due $\sim 3 / 6$.

ACADEMIC HONESTY ON PROBLEM SETS

- We take academic honestly on the problem sets seriously.
- If caught copying from another group (or allowing someone to copy your work), copying from problem sets or answer keys from past semesters, etc. you will receive a 0% on the problem set and 5\% off your final course grade.
- Even if one group member copies, the rest of the group is at risk of the same deduction. Don't just split up the problems and not work on them together.
- You can change your problem set group from assignment to assignment.

SUMMARY

Last Class:

- SimHash for cosine similarity
- Applications to e.g., approximate neural network computation.
- Introduction to the Frequent Elements (heavy-hitters) problem in data streams.
- The Boyer-Moore voting algorithm for majority.

This Class:

- Extend Boyer-Moore to the general Frequent Elements: problem: Misra-Gries summaries.
- Count-min sketch (random hashing for frequent element estimation).

UPCOMING

Next Few Classes:

- Random compression methods for high dimensional vectors. The Johnson-Lindenstrauss lemma.
- Compressed sensing (sparse recovery) and connections to the frequent elements problem.

After That: Spectral Methods

- PCA, low-rank approximation, and the singular value decomposition.
- Spectral clustering and spectral graph theory.

Will use a lot of linear algebra. May be helpful to refresh.

- Vector dot product, addition, length. Matrix vector multiplication.
- Linear independence, column span, orthogonal bases, rank.
- Orthogonal projection, eigendecomposition, linear systems.

THE FREQUENT ITEMS PROBLEM

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_{1}, \ldots, x_{n} (with possible duplicates). Return any item that appears at least $\frac{n}{k}$ times. E.g., for $n=9, k=3$:

$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{x}_{\mathbf{4}}$	$\mathbf{x}_{\mathbf{5}}$	$\mathbf{x}_{\mathbf{6}}$	$\mathbf{x}_{\mathbf{7}}$	$\mathbf{x}_{\mathbf{8}}$	$\mathbf{x}_{\mathbf{9}}$
5	12	3	3	4	5	5	10	3

- At most $\frac{n}{n / k}=k$ items are ever returned.
- Think of $k=100$. Want items appearing $\geq 1 \%$ of the time.
- Easy with $O(n)$ space - store the count for each item and return the one that appears $\geq n / k$ times.

Applications: Finding viral products/media/searches, frequent itemset mining, detecting DoS and other attacks, 'iceberg queries' in databases.

MISRA-GRIES SUMMARIES

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x_{1}, \ldots, x_{n} (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

Boyer-Moore Voting Algorithm:Misra-Gries Summary:

- Initialize count $c:=0$, majority element $m:=\perp$ counts
$c_{1}, \ldots, c_{k}:=0$, elements $m_{1}, \ldots, m_{k}:=\perp$
- For $i=1, \ldots, n$
- If $c=0$, set $m:=x_{i}$
- Else if $m=x_{i}$, set $c:=c+1$.
- Else if $m \neq x_{i}$, set $c:=c-1$.
- If $m_{j}=x_{i}$ for some j, set $c_{j}:=c_{j}+1$.
- Else let $t=\operatorname{argmin} c_{j}$. If $c_{t}=0$, set $m_{t}:=x_{i}$ and $c_{t}:=1$.
- Else $c_{j}:=c_{j}-1$ for all j.

MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts $c_{1}, \ldots, c_{k}:=0$, elements $m_{1}, \ldots, m_{k}:=\perp$.
- For $i=1, \ldots, n$
- If $m_{j}=x_{i}$ for some j, set $c_{j}:=c_{j}+1$.
- Else let $t=\arg \min c_{j}$. If $c_{t}=0$, set $m_{t}:=x_{i}$ and $c_{t}:=1$.
- Else $c_{j}:=c_{j}-1$ for all j.

$$
\begin{array}{lll}
c_{1}=0, m_{1}=\perp & c_{1}=1, m_{1}=5 \\
c_{2}=0, m_{1}=\perp & c_{2}=0, m_{1}=\perp \\
c_{3}=0, m_{1}=\perp & c_{3}=0, m_{1}=\perp
\end{array}
$$

$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{x}_{\mathbf{4}}$	$\mathbf{x}_{\mathbf{5}}$	$\mathbf{x}_{\mathbf{6}}$	$\mathbf{x}_{\mathbf{7}}$	$\mathbf{x}_{\mathbf{8}}$	$\mathbf{x}_{\mathbf{9}}$	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$
5	12	3	3	4	5	5	10	3	5	12	3

Claim: At the end of the stream, all items with frequency $\geq \frac{n}{k}$

MISRA-GRIES ANALYSIS

Claim: At the end of the stream, the Misra-Gries algorithm stores k items, including all those with frequency $\geq \frac{n}{k}$. Intuition:

- If there are exactly k items, each appearing exactly n / k times, all are stored (since we have k storage slots).
- If there are $k / 2$ items each appearing $\geq n / k$ times, there are $\leq n / 2$ irrelevant items, being inserted into $k / 2$ 'free slots'.
- May cause $\frac{n / 2}{k / 2}=\frac{n}{k}$ decrement operations. Few enough that the heavy items (appearing n / k times each) are still stored.

Anything undesirable about the Misra-Gries output guarantee? May have false positives - infrequent items that are stored.

APPROXIMATE FREQUENT ELEMENTS

Issue: Misra-Gries algorithm stores k items, including all with frequency $\geq n / k$. But may include infrequent items.

- In fact, no algorithm using o(n) space can output just the items with frequency $\geq n / k$. Hard to tell between an item with frequency n / k (should be output) and $n / k-1$ (should not be output).

\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\mathbf{x}_{4}	\mathbf{x}_{5}	\mathbf{x}_{6}		$\mathbf{x}_{n-n / k+1}$		\mathbf{x}_{n}
3	12	9	27	4	101	\cdots	3	\cdots	3

(ϵ, k)-Frequent Items Problem: Consider a stream of n items x_{1}, \ldots, x_{n}. Return a set F of items, including all items that appear at least $\frac{n}{R}$ times and only items that appear at least $(1-\epsilon) \cdot \frac{n}{R}$ times.

APPROXIMATE FREQUENT ELEMENTS WITH MISRA-GRIES

Misra-Gries Summary: (ϵ-error version)

- Let $r:=\lceil k / \epsilon\rceil$
- Initialize counts $c_{1}, \ldots, c_{r}:=0$, elements $m_{1}, \ldots, m_{r}:=\perp$.
- For $i=1, \ldots, n$
- If $m_{j}=x_{i}$ for some j, set $c_{j}:=c_{j}+1$.
- Else let $t=\arg \min c_{j}$. If $c_{t}=0$, set $m_{t}:=x_{i}$ and $c_{t}:=1$.
- Else $c_{j}:=c_{j}-1$ for all j.
- Return any m_{j} with $c_{j} \geq(1-\epsilon) \cdot \frac{n}{R}$.

Claim: For all m_{j} with true frequency $f\left(m_{j}\right)$:

$$
f\left(m_{j}\right)-\frac{\epsilon n}{k} \leq c_{j} \leq f\left(m_{j}\right) .
$$

Intuition: \# items stored r is large, so relatively few decrements. Implication: If $f\left(m_{j}\right) \geq \frac{n}{k}$, then $c_{j} \geq(1-\epsilon) \cdot \frac{n}{k}$ so the item is returned. If $f\left(m_{j}\right)<(1-\epsilon) \cdot \frac{n}{k}$, then $c_{j}<(1-\epsilon) \cdot \frac{n}{k}$ so the item is not returned.

APPROXIMATE FREQUENT ELEMENTS WITH MISRA-GRIES

Upshot: The (ϵ, k)-Frequent Items problem can be solved via the Misra-Gries approach.

- Space usage is $\lceil k / \epsilon\rceil$ counts - $O\left(\frac{k \log n}{\epsilon}\right)$ bits and $\lceil k / \epsilon\rceil$ items.
- Deterministic approximation algorithm.

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

A common alternative to the Misra-Gries approach is the count-min sketch: a randomized method closely related to bloom filters.

- A major advantage: easily distributed to processing on multiple servers. Build arrays A_{1}, \ldots, A_{s} separately and then just set $A:=A_{1}+\ldots+A_{s}$.

random hash function \mathbf{h}
random hash fur

m length array \mathbf{A}	0	0	0	0	0	0	0	0	0	0

m length array \mathbf{A}

Will use $A[h(x)]$ to estimate $f(x)$, the frequency of x in the stream |e $\left|\left\{x_{i} \cdot x_{i}=x\right\}\right|$

COUNT-MIN SKETCH ACCURACY

Use $\mathrm{A}[\mathrm{h}(x)]$ to estimate $f(x)$
Claim 1: We always have $A[h(x)] \geq f(x)$. Why?

- $A[h(x)]$ counts the number of occurrences of any y with $h(y)=h(x)$, including x itself.
- $A[h(x)]=f(x)+\sum_{y \neq x: h(y)=h(x)} f(y)$.
$f(x)$: frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m : size of count-min sketch array.

COUNT-MIN SKETCH ACCURACY

$$
A[h(x)]=f(x)+\underbrace{\sum_{y \neq x: h(y)=h(x)} f(y)}_{\text {error in frequency estimate }}
$$

Expected Error:

$$
\begin{aligned}
\mathbb{E}\left[\sum_{y \neq x: h(y)=h(x)} f(y)\right] & =\sum_{y \neq x} \operatorname{Pr}(h(y)=h(x)) \cdot f(y) \\
& =\sum_{y \neq x} \frac{1}{m} \cdot f(y)=\frac{1}{m} \cdot(n-f(x)) \leq \frac{n}{m}
\end{aligned}
$$

What is a bound on probability that the error is $\geq \frac{3 n}{m}$?
Markov's inequality: $\operatorname{Pr}\left[\sum_{y \neq x: h(y)=h(x)} f(y) \geq \frac{3 n}{m}\right] \leq \frac{1}{3}$.
What property of h is required to show this bound? 2-universal.
$f(x)$: frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of count-min sketch array.

COUNT-MIN SKETCH ACCURACY

Claim: For any x, with probability at least $2 / 3$,

$$
f(x) \leq A[h(x)] \leq f(x)+\frac{3 n}{m} \cdot \frac{\epsilon n}{k} .
$$

To solve the (ϵ, k)-Frequent elements problem, set $m=\frac{3 k}{\epsilon}$.
How can we improve the success probability? Repetition.
$f(x)$: frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m : size of count-min sketch array.

COUNT-MIN SKETCH ACCURACY

Estimate $f(x)$ with $\tilde{f}(x)=\min _{i \in[t]} A_{i}\left[h_{i}(x)\right]$. (count-min sketch) Why min instead of mean or median? The minimum estimate is always the most accurate since they are all overestimates of the true frequency!

COUNT-MIN SKETCH ANALYSIS

Estimate $f(x)$ by $\tilde{f}(x)=\min _{i \in[t]} A_{i}\left[h_{i}(x)\right]$

- For every x and $i \in[t]$, we know that for $m=O(k / \epsilon)$, with probability $\geq 2 / 3$:

$$
f(x) \leq A_{i}\left[\mathbf{h}_{i}(x)\right] \leq f(x)+\frac{\epsilon n}{k} .
$$

- What is $\operatorname{Pr}\left[f(x) \leq \tilde{f}(x) \leq f(x)+\frac{\epsilon n}{k}\right]$? $1-1 / 3^{t}$.
- To get a good estimate with probability $\geq 1-\delta$, set $t=O(\log (1 / \delta))$.

COUNT-MIN SKETCH

Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\epsilon n}{R}$ with probability $\geq 1-\delta$ in $O(\log (1 / \delta) \cdot k / \epsilon)$ space.

- Accurate enough to solve the (ϵ, k)-Frequent elements problem.
- Actually identifying the frequent elements quickly requires a little bit of further work.
One approach: Store potential frequent elements as they come in. At step i remove any elements whose estimated frequency is below i / k. Store at most $O(k)$ items at once and have all items with frequency $\geq n / k$ stored at the end of the stream.

Questions on Frequent Elements?

