
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Spring 2020.
Lecture 4

0

last time

Last Class:

• Union bound: Pr(A ∪ B) ≤ Pr(A) + Pr(B) for any events A,B.
Application to bounding the maximum server load when
using randomized routing.

• From Markov’s inequality to exponential tail bounds.
• Bernstein, Chernoff bounds and the Central Limit Theorem.

This Time:

• Bloom Filters: Random hashing to maintain a large sets in
very small space.

• Distinct Elements: Estimating the number of unique items in
a data stream via hashing. Prelude to audio fingerprinting,
document search, etc.

1

a general comment

We have covered a lot in the first three classes.

The proofs in class are meant to illustrate techniques that can be
used to tackle many algorithmic and data related problems. You do
not need to have these proofs or their conclusions memorized.

• Know and be comfortable applying: independence, linearity of
expectation, linearity of variance, union bound, Markov’s inequality,
Chebyshev’s inequality, basic probability calculations.

• Able to use techniques like: breaking random variables into sums of
indicator variables and analyzing expected collisions (used in CATCHA
analysis, two-level hashing analysis, and variance calculations for
randomized load balancing.)

• Know definitions of 2-universal and pairwise independent hash functions
and why they are useful.

• Able to apply exponential tail bounds (not have them memorized.)

• Understand law of large numbers and central limit theorem at a high level. 2

returning to a question

Bernstein Inequality (Single Variable): Consider independent
random variables X1, . . . , Xnrandom variable X1 in [−M,M]. Let
µ = E[

∑n
i=1 XiX1] and σ2 = Var[

∑n
i=1 Xi] =

∑n
i=1 Var[Xi] Var[X1].

For any t ≥ 0:

Pr
(∣∣∣∣∣

n∑
i=1

XiX1 − µ

∣∣∣∣∣ ≥ t
)

≤ 2 exp
(
− t2

2σ2 + 4
3Mt

)
.

Why can’t this just applied when n = 1?

Observation 1: Only interesting to apply when t ≤ 2M. Why?

Observation 2: When t ≤ 2M,

2 exp
(
− t2

2σ2 + 4
3Mt

)
≥ 2 exp

(
− 4M

2

8
3M2

)
≥ 2 exp(−3/2) ≈ .44.

Very weak bound.
3

dependence of clt on sample size

Where does sample size come in?

Bernstein Inequality: Consider independent random
variables X1, . . . , Xn in [−M,M]. Let µ = E[

∑n
i=1 Xi] and

σ2 = Var[
∑n

i=1 Xi] =
∑n

i=1 Var[Xi]. For any t ≥ 0:

Pr
(∣∣∣∣∣

n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ t
)

≤ 2 exp
(
− t2

2σ2 + 4
3Mt

)
.

Bernstein Inequality: Consider independent random
variables 1

nX1, . . . ,
1
nXn in [−M

n ,
M
n]. Let µ = E

[1
n
∑n

i=1 Xi
]

and σ2 = Var[
∑n

i=1
1
nXi] =

1
n2
∑n

i=1 Var[Xi]. For any t ≥ 0:

Pr
(∣∣∣∣∣ 1n

n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ t
)

≤ 2 exp
(
− t2

2σ2 + 4
3Mt/n

)
.

Apply the inequality to the random variables 1
nX1 . . . ,

1
nXn.

4

dependence of clt on sample size

We can then rework the inequality letting M̄ = −M/n and
σ̄2 = σ2

n = 1
n Var[

∑n
i=1 Xi]. Giving:

Bernstein Inequality: (Sample Mean) Consider indepen-
dent random variables X1, . . . , Xn in [−M̄, M̄]. Let µ =

E
[1
n
∑n

i=1 Xi
]
and σ̄2 = 1

n Var[
∑n

i=1 Xi] = 1
n
∑n

i=1 Var[Xi].
For any t ≥ 0:

Pr
(∣∣∣∣∣ 1n

n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ t
)

≤ 2 exp
(
− t2n
2σ̄2 + 4

3 M̄t

)
.

Bound is < δ when n ≥ 2 log(1/δ) ·
(
σ̄2+M̄t
t2

)
5

approximately maintaining a set

Want to store a set S of items from a massive universe of
possible items (e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to
check if x is in the set. Both in O(1) time.

• Allow small probability δ > 0 of false positives. I.e., for any x,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing).

6

bloom filters

Chose k random hash functions h1, . . . ,hk mapping the universe of
elements U→ [m].

• Maintain an array A containing m bits, all initially 0.
• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.
• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions. 7

applications: caching

Akamai (Boston-based company serving 15− 30% of all web traffic)
applies bloom filters to prevent caching of ‘one-hit-wonders’ – pages
only visited once fill over 75% of cache.

• When url x comes in, if query(x) = 1, cache the page at x. If not,
run insert(x) so that if it comes in again, it will be cached.

• False positive: A new url (possible one-hit-wonder) is cached. If
the bloom filter has a false positive rate of δ = .05, the number of
cached one-hit-wonders will be reduced by at least 95%.

8

applications: databases

Distributed database systems, including Google Bigtable, Apache
HBase, Apache Cassandra, and PostgreSQL use bloom filters to
prevent expensive lookups of non-existent data.

• When a new rating is inserted for (userx,moviey), add
(userx,moviey) to a bloom filter.

• Before reading (userx,moviey) (possibly requiring an out of
memory access), check the bloom filter, which is stored in memory.

• False positive: A read is made to a possibly empty cell. A δ = .05
false positive rate gives a 95% reduction in these empty reads. 9

applications: databases

Bloom filters are used by Oracle and other database
companies to speed up database joins.

• Matches up a key in column A of one table to a key in column
B of another, and merges corresponding information.

• A bloom filter can be used to quickly eliminate entries that
appear in A but not in B.

• A false positive rate of δ means that a 1− δ fraction of these
entries can be eliminated in the initial bloom filter check. 10

more applications

• Recommendation systems (Netflix, Youtube, Tinder, etc.) use
bloom filters to prevent showing users the same
recommendations twice.

• Spam/Fraud Detection:
• Bit.ly and Google Chrome use bloom filters to quickly check if a
url maps to a flagged site and prevent a user from following it.

• Can be used to detect repeat clicks on the same ad from a
single IP-address, which may be the result of fraud.

• Digital Currency: Some Bitcoin clients use bloom filters to
quickly pare down the full transaction log to transactions
involving bitcoin addresses that are relevant to them (SPV:
simplified payment verification).

11

analysis

For a bloom filter with m bits and k hash functions, the insertion and
query time is O(k). How does the false positive rate δ depend on m,
k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the ith
bit of the array A is still 0? n× k total hashes must not hit bit i.

Pr(A[i] = 0) = Pr
(
h1(x1) ̸= i ∩ . . . ∩ hk(xk) ̸= i

∩ h1(x2) ̸= i . . . ∩ hk(x2) ̸= i ∩ . . .
)

= Pr
(
h1(x1) ̸= i)× . . .× Pr

(
hk(x1) ̸= i)× Pr

(
h1(x2) ̸= i) . . .︸ ︷︷ ︸

k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

12

analysis

How does the false positive rate δ depend on m, k, and the number
of items inserted?

Step 1: What is the probability that after inserting n elements, the ith
bit of the array A is still 0?

Pr(A[i] = 0) =
(
1− 1

m

)kn
≈ e− kn

m

Step 2: What is the probability that querying a new item w gives a
false positive?

Pr
(
A[h1(w)] = . . . = A[hk(w)] = 1

)
= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

=
(
1− e− kn

m

)k
Actually Incorrect! Dependent events.

n: total number items in filter,m: number of bits in filter, k: number of random
hash functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate. 13

correct analysis sketch

Step 1: To avoid dependence issues, condition on the event that the
A has t zeros in it after n insertions, for some t ≤ m. For a
non-inserted element w, after conditioning on this event we
correctly have:

Pr(A[h1(w)] = . . . = A[hk(w)] = 1)
= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1).

I.e., the events A[h1(w)] = 1,…, A[hk(w)] = 1 are independent
conditioned on the number of bits set in A. Why?

• Conditioned on this event, for any j, since hj is a fully random hash
function, Pr(A[hj(w)] = 1) = t

m .

• Thus conditioned on this event, the false positive rate is
(
1− t

m
)k.

• It remains to show that t
m ≈ e− kn

m with high probability. We already
have that E[tm] =

1
m
∑m

i=1 Pr(A[i] = 0) ≈ e− kn
m .

14

correct analysis sketch

Need to show that the number of zeros t in A after n insertions
is bounded by O

(
e− kn

m

)
with high probability.

Can apply Theorem 2 of: http://cglab.ca/~morin/
publications/ds/bloom-submitted.pdf

15

http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf
http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf

false positive rate

False Positive Rate: with m bits of storage, k hash functions, and n
items inserted δ ≈

(
1− e−kn

m

)k
.

• We have 100 million users and 10, 000 movies. On average each
user has rated only 10 movies so of these 1012 possible
(user,movie) pairs, only 10 ∗ 100, 000, 000 = 109 = n (user,movie)
pairs have non-empty entries in our table.

• We allocate m = 8n = 8× 109 bits for a Bloom filter (1 GB). How
should we set k to minimize the number of false positives?

0 5 10 15 20 25 30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

• Can differentiate to show optimal number of hashes is k = ln 2 · mn .
• Balances between filling up the array with too many hashes and
having enough hashes so that even when the array is pretty full, a
new item is unlikely to have all its bits set (yield a false positive)

16

something to think about

What if we wanted to maintain a set with possible false
negatives but no false positives?

Turns out that this is extremely difficult.

17

Questions on Bloom Filters?

18

streaming algorithms

Stream Processing: Have a massive dataset X with n items
x1, x2, . . . , xn that arrive in a continuous stream. Not nearly
enough space to store all the items (in a single location).

• Still want to analyze and learn from this data.
• Typically must compress the data on the fly, storing a data
structure from which you can still learn useful information.

• Often the compression is randomized. E.g., bloom filters.
• Compared to traditional algorithm design, which focuses on
minimizing runtime, the big question here is how much
space is needed to answer queries of interest.

19

some examples

• Sensor data: images from telescopes (15 terabytes per night from
the Large Synoptic Survey Telescope), readings from seismometer
arrays monitoring and predicting earthquake activity, traffic
cameras and travel time sensors (Smart Cities), electrical grid
monitoring.

• Internet Traffic: 500 million Tweets per day, 5.6 billion Google
searches, billions of ad-clicks and other logs from instrumented
webpages, IPs routed by network switches, ...

• Datasets in Machine Learning: When training e.g. a neural network
on a large dataset (ImageNet with 14 million images), the data is
typically processed in a stream due to storage limitations.

20

distinct elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, outputestimate the number of distinct elements in
the stream. E.g.,

1, 5, 7, 5, 2, 1→ 4 distinct elements

Applications:

• Distinct IP addresses clicking on an ad or visiting a site.
• Distinct values in a database column (for estimating sizes of
joins and group bys).

• Number of distinct search engine queries.
• Counting distinct motifs in large DNA sequences.

Google Sawzall, Facebook Presto, Apache Drill, Twitter Algebird
21

hashing for distinct elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U→ [0, 1] be a random hash function (with a real valued
output)

• s := 1
• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

22

hashing for distinct elements

Hashing for Distinct Elements:

• Let h : U→ [0, 1] be a random hash function (with a real valued output)
• s := 1
• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

• After all items are processed, s is the minimum of d points chosen
uniformly at random on [0, 1]. Where d = # distinct elements.

• Intuition: The larger d is, the smaller we expect s to be.
• Same idea as Flajolet-Martin algorithm and HyperLogLog, except
they use discrete hash functions.

23

performance in expectation

s computed by hashing algorithm is the minimum of d values
chosen randomly in [0, 1].

E[s] = 1
d+ 1 (Interesting to prove to yourself.)

• So estimate of d̃ = 1
s − 1 is correct if s exactly equals its

expectation.
• If |s− E[s]| ≤ ϵ · E[s] for any ϵ ∈ (0, 1/2) can show:

(1− 2ϵ)d ≤ d̃ ≤ (1+ 4ϵ)d.
24

Next Time:

• Complete the analysis of hashing algorithm for distinct
elements.

• Use a min-of-hashes technique for a different problem:
estimating the similarity between two bit strings.

• A key idea behind audio fingerprint search (Shazam),
document search (plagiarism and copyright violation
detection), recommendation systems, etc.

Questions?

25

