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logistics

By Thursday:

• Sign up for Piazza.
• Sign up for Gradescope (code on class website) and fill out
the Gradescope consent poll on Piazza. Contact me via email
if you don’t consent to use Gradescope.

• First problem set will be available in the next day or two,
due 2/14.
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last time

Last Class We Covered:

• Markov’s inequality: the most fundamental concentration
bound.

• Random hash functions, collision free hashing, and
two-level hashing (analysis with linearity of expectation and
Markov’s inequality.)

• 2-universal and pairwise independent hash functions.
• Chebyshev’s inequality and an elementary proof of the law
of large numbers.
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today

Today: We’ll see even stronger concentration bounds than
Chebyshev’s inequality – exponential tail bounds.

• Will show a version of the central limit theorem.

First: We’ll show learn about the union bound and apply it to
randomized load balancing.
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working application

Randomized Load Balancing:

• n requests randomly assigned to k servers using a random hash
function.

• Letting Ri be the number of requests assigned to server i,
E[Ri] = n

k and we provision each server with the capacity to serve
twice its expected load: 2nk requests.

• What is the probability that a server exceeds its capacity?
• To apply Chebyshev’s inequality, need to bound Var[Ri].
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load balancing variance

Recall that we can write Ri as:

Ri =
n∑
j=1

Ri,j Var[Ri] =
n∑
j=1

Var[Ri,j] (linearity of variance)

where Ri,j is 1 if request j is assigned to server i and 0 o.w.

Var[Ri,j] = E
[(
Ri,j − E[Ri,j]

)2]
= Pr(Ri,j = 1) ·

(
1− E[Ri,j]

)2
+ Pr(Ri,j = 0) ·

(
0− E[Ri,j]

)2
=
1
k ·
(
1− 1

k

)2
+

(
1− 1

k

)
·
(
0− 1

k

)2
=
1
k − 1

k2 ≤ 1
k =⇒ Var[Ri] ≤

n
k .

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.
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bounding the load via chebyshevs

Letting Ri be the number of requests sent to server i, E[Ri] = n
k

and Var[Ri] ≤ n
k .

Applying Chebyshev’s:

Pr
(
Ri ≥

2n
k

)
≤ Pr

(
|Ri − E[Ri]| ≥

n
k

)
≤ n/k
n2/k2 =

k
n .

• Overload probability is extremely small when k≪ n!
• Might seem counterintuitive – bound gets worse as k grows.
• When k is large, the number of requests each server sees in
expectation is very small so the law of large numbers
doesn’t ‘kick in’.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.
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maximum server load

What is the probability that the maximum server load exceeds
2 · E[Ri] = 2n

k . I.e., that some server is overloaded if we give
each 2n

k capacity?

Pr
(
max
i

(Ri) ≥
2n
k

)
= Pr

([
R1 ≥

2n
k

]
∪
[
R2 ≥

2n
k

]
∪ . . . ∪

[
Rk ≥

2n
k

])
= Pr

([
R1 ≥

2n
k

]
or
[
R2 ≥

2n
k

]
or . . . or

[
Rk ≥

2n
k

])
= Pr

( k∪
i=1

[
Ri ≥

2n
k

])

We want to show that Pr
(∪k

i=1
[
Ri ≥ 2n

k
])
is small.

How do we do this? Note that R1, . . . ,Rk are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] = n

k . Var[Ri] =
n
k .
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the union bound

Union Bound: For any random events A1,A2, ...,Ak,

Pr (A1 ∪ A2 ∪ . . . ∪ Ak) ≤ Pr(A1) + Pr(A2) + . . .+ Pr(Ak).

When is the union bound tight? When A1, ...,Ak are all disjoint.

On the first problem set, you will prove the union bound, as a
consequence of Markov’s inquality. 8



applying the union bound

What is the probability that the maximum server load exceeds
2 · E[Ri] = 2n

k . I.e., that some server is overloaded if we give each
2n
k

capacity?

Pr
(
max
i

(Ri) ≥
2n
k

)
= Pr

( k∪
i=1

[
Ri ≥

2n
k

])

≤
k∑
i=1

Pr
([
Ri ≥

2n
k

])
(Union Bound)

≤
k∑
i=1

k
n =

k2
n (Bound from Chebyshev’s)

As long as k ≤ O(
√
n), with good probability, the maximum server

load will be small (compared to the expected load).

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] = n

k . Var[Ri] =
n
k .
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another view on this problem

The number of servers must be small compared to the number
of requests (k = O(

√
n)) for the maximum load to be bounded

in comparison to the expected load with good probability.

• There are many requests routed to a relatively small number
of servers so the load seen on each server is close to what is
expected via law of large numbers.

• A Useful Exercise: Given n requests, and assuming all
servers have fixed capacity C, how many servers should you
provision so that with probability ≥ 99/100 no server is
assigned more than C requests?

n: total number of requests, k: number of servers randomly assigned requests.
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Questions on union bound, Chebyshev’s inequality,
random hashing?
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flipping coins

We flip n = 100 independent coins, each are heads with
probability 1/2 and tails with probability 1/2. Let H be the
number of heads.

E[H] = n
2 = 50 and Var[H] = n

4 = 25→ s.d. = 5

Markov’s:

Pr(H ≥ 60) ≤ .833
Pr(H ≥ 70) ≤ .714
Pr(H ≥ 80) ≤ .625

Chebyshev’s:

Pr(H ≥ 60) ≤ .25
Pr(H ≥ 70) ≤ .0625
Pr(H ≥ 80) ≤ .0278

In Reality:

Pr(H ≥ 60) = 0.0284
Pr(H ≥ 70) = .000039

Pr(H ≥ 80) < 10−9

H has a simple Binomial distribution, so can compute these
probabilities exactly.
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tighter concentration bounds

To be fair.... Markov and Chebyshev’s inequalities apply much more
generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very
general distributions?

• Markov’s: Pr(X ≥ t) ≤ E[X]
t . First Moment.

• Chebyshev’s: Pr(|X− E[X]| ≥ t) = Pr(|X− E[X]|2 ≥ t2) ≤ Var[X]
t2 .

Second Moment.

• What if we just apply Markov’s inequality to even higher moments?
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a fourth moment bound

Consider any random variable X:

Pr(|X− E[X]| ≥ t) = Pr
(
(X− E[X])4 ≥ t4

)
≤

E
[
(X− E[X])4

]
t4 .

Application to Coin Flips: Recall: n = 100 independent fair coins, H is
the number of heads.

• Bound the fourth moment:

E
[
(H− E[H])4

]
= E

( 100∑
i=1

Hi − 50
)4 =

∑
i,j,k,ℓ

cijkℓE[HiHjHkHℓ] = 1862.5

where Hi = 1 if coin flip i is heads and 0 otherwise. Then apply
some messy calculations...

• Apply Fourth Moment Bound: Pr (|H− E[H]| ≥ t) ≤ 1862.5
t4 .
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tighter bounds

Chebyshev’s:

Pr(H ≥ 60) ≤ .25
Pr(H ≥ 70) ≤ .0625
Pr(H ≥ 80) ≤ .04

4th Moment:

Pr(H ≥ 60) ≤ .186
Pr(H ≥ 70) ≤ .0116
Pr(H ≥ 80) ≤ .0023

In Reality:

Pr(H ≥ 60) = 0.0284
Pr(H ≥ 70) = .000039

Pr(H ≥ 80) < 10−9

Can we just keep applying Markov’s inequality to higher and
higher moments and getting tighter bounds?

• Yes! To a point.
• In fact – don’t need to just apply Markov’s to |X− E[X]|k for
some k. Can apply to any monotonic function f (|X− E[X]|).

• Why monotonic? Pr (|X− E[X]| > t) = Pr (f (|X− E[X]|) > f(t)).

H: total number heads in 100 random coin flips. E[H] = 50.
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exponential concentration bounds

Moment Generating Function: Consider for any t > 0:

Mt(X) = et·(X−E[X]) =
∞∑
k=0

tk(X− E[X])k
k!

• Mt(X) is monotonic for any t > 0.
• Weighted sum of all moments, with t controlling how slowly
the weights fall off (larger t = slower falloff).

• Choosing t appropriately lets one prove a number of very
powerful exponential concentration bounds (exponential tail
bounds).

• Chernoff bound, Bernstein inequalities, Hoeffding’s
inequality, Azuma’s inequality, Berry-Esseen theorem, etc.

• We will not cover the proofs in the this class.
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bernstein inequality

Bernstein Inequality: Consider independent random variables
X1, . . . , Xn all falling in [−M,M][-1,1]. Let µ = E[

∑n
i=1 Xi] and σ2 =

Var[
∑n

i=1 Xi] =
∑n

i=1 Var[Xi]. For any t ≥ 0s ≥ 0:

Pr
(∣∣∣∣∣

n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ t
)

≤ 2 exp
(
− t2

2σ2 + 4
3Mt

)
.

Pr
(∣∣∣∣∣

n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ sσ
)

≤ 2 exp
(
−s

2

4

)
.

Assume that M = 1 and plug in t = s · σ for s ≤ σ.

Compare to Chebyshev’s: Pr
(∣∣∑n

i=1 Xi − µ
∣∣ ≥ sσ

)
≤ 1

s2 .

• An exponentially stronger dependence on s! 17



comparision to chebyshev’s

Consider again bounding the number of heads H in n = 100
independent coin flips.

Chebyshev’s:

Pr(H ≥ 60) ≤ .25
Pr(H ≥ 70) ≤ .0625
Pr(H ≥ 80) ≤ .04

Bernstein:

Pr(H ≥ 60) ≤ .15
Pr(H ≥ 70) ≤ .00086
Pr(H ≥ 80) ≤ 3−7

In Reality:

Pr(H ≥ 60) = 0.0284
Pr(H ≥ 70) = .000039

Pr(H ≥ 80) < 10−9

Getting much closer to the true probability.

H: total number heads in 100 random coin flips. E[H] = 50.
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interpretation as a central limit theorem

Bernstein Inequality: Consider independent random variables
X1, . . . , Xn falling in [-1,1]. Let µ = E[

∑
Xi] and σ2 = Var[

∑
Xi].

Pr
(∣∣∣∣∣

n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ sσ
)

≤ 2 exp
(
−s

2

4

)
.

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

N (0, σ2) has density p(x) = 1√
2πσ2

· e−
x2
2σ2 .
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gaussian tails

N (0, σ2) has density p(x) = 1√
2πσ2

· e−
x2
2σ2 .

Exercise: Using this can show that for X ∼ N (0, σ2): for any s ≥ 0,

Pr (|X| ≥ s · σ) ≤ O(1) · e− s2
2 .

Essentially the same bound that Bernstein’s inequality gives!

Central Limit Theorem Interpretation: Bernstein’s inequality gives a
quantitative version of the CLT. The distribution of the sum of
bounded independent random variables can be upper bounded with
a Gaussian (normal) distribution.
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central limit theorem

Stronger Central Limit Theorem: The distribution of the sum of
n bounded independent random variables converges to a
Gaussian (normal) distribution as n goes to infinity.

• Why is the Gaussian distribution is so important in statistics,
science, ML, etc.?

• Many random variables can be approximated as the sum of
a large number of small and roughly independent random
effects. Thus, their distribution looks Gaussian by CLT.
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the chernoff bound

A useful variation of the Bernstein inequality for binary
(indicator) random variables is:

Chernoff Bound (simplified version): Consider independent
random variables X1, . . . , Xn taking values in {0, 1}. Let µ =

E[
∑n

i=1 Xi]. For any δ ≥ 0

Pr
(∣∣∣∣∣

n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ δµ

)
≤ 2 exp

(
− δ2µ

2+ δ

)
.

As δ gets larger and larger, the bound falls of exponentially fast.
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return to random hashing

We hash m values x1, . . . , xm using a random hash function into
a table with n = m entries.

• I.e., for all j ∈ [m] and i ∈ [n], Pr(h(x) = i) = 1
m and hash

values are chosen independently.

What will be the maximum number of items hashed into the
same location?

O(n) O(logn) O(
√
n) O(1/n)
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maximum load in randomized hashing

What will be the maximum number of items hashed into the same
location? O(logm)

Let Si be the number of items hashed into position i and Si,j be 1 if xj
is hashed into bucket i (h(xj) = i) and 0 otherwise.

E[Si] =
m∑
j=1

E[Si,j] = m · 1m = 1 = µ.

By the Chernoff Bound: for any δ ≥ 0,

Pr(Si ≥ 1+ δ) ≤ Pr
(∣∣∣∣∣

n∑
i=1

Si,j − 1
∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
− δ2

2+ δ

)

m: total number of items hashed and size of hash table. x1, . . . , xm : the items.
h: random hash function mapping x1, . . . , xm → [m].
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maximum load in randomized hashing

Pr(Si ≥ 1+ δ) ≤ Pr
(∣∣∣∣∣

n∑
i=1

Si,j − 1
∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
− δ2

2+ δ

)
.

Set δ = 20 logm. Gives:

Pr(Si ≥ 20 logm+ 1) ≤ 2 exp
(
− (20 logm)2

2+ 20 logm

)
≤ exp(−18 logm) ≤ 2

m18 .

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 20 logm+ 1) = Pr
( m∪
i=1

(Si ≥ 20 logn+ 1)
)

≤
m∑
i=1

Pr(Si ≥ 20 logm+ 1) ≤ m · 2
m18 =

2
m17 .

m: total number of items hashed and size of hash table. Si : number of items
hashed to bucket i. Si,j : indicator if xj is hashed to bucket i. δ: any value ≥ 0.
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maximum load in randomized hashing

Upshot: If we randomly hash m items into a hash table with m
entries the maximum load per bucket is O(logm) with very
high probability.

• So, even with a simple linked list to store the items in each
bucket, worst case query time is O(logm).

• Using Chebyshev’s inequality could only show the maximum
load is bounded by O(

√
m) with good probability.

• The Chebyshev bound holds even with a pairwise
independent hash function. The stronger Chernoff-based
bound can be shown to hold with a k-wise independent
hash function for k = O(logm).
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Questions?

This concludes probability review/concentration bounds.
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