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LOGISTICS

- Problem Set 4 is due Sunday 5/3 at 8pm.

- Exam is at 2pm on May 6th. Open note, similar to midterm.

- Exam review guide and practice problems have been posted
under the schedule tab on the course page.

- I will hold usual office hours today and exam review office
hours this Thursday and next Tuesday during the regular
class time 11:30am-12:45pm

- Regular SRTI's are suspended this semester. But | am
holding an optional SRTI for this class and would really
appreciate your feedback.

- http://owl.umass.edu/partners/
courseEvalSurvey/uma/.


http://owl.umass.edu/partners/courseEvalSurvey/uma/
http://owl.umass.edu/partners/courseEvalSurvey/uma/

SUMMARY

Last Class:

- Analysis of gradient descent for optimizing convex functions.

- (The same) analysis of projected gradient descent for optimizing
under (convex) constraints.

- Convex sets and projection functions.

This Class:

+ Online learning, regret, and online gradient descent.

- Application to analysis of stochastic gradient descent (if time).

- Course summary/wrap-up



ONLINE GRADIENT DESCENT

In reality many learning problems are online.

+ Websites optimize ads or recommendations to show users, given
continuous feedback from these users.

- Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

- Face recognition systems, other classification systems, learn from
mistakes over time.

Want to minimize some global loss L(6,X) = 327, £(6,%;), when data
points are presented in an online fashion X;, Xs, ..., X, (like in
streaming algorithms)

Stochastic gradient descent is a special case: when data points are
considered a random order for computational reasons.



ONLINE OPTIMIZATION FORMAL SETUP

Online Optimization: In place of a single function f, we see a
different objective function at each step:

fio.. fi RIS R

.

- At each step, first pick (play) a parameter vector ().
- Then are told f; and incur cost f;(61)).
- Goal: Minimize total cost St f;(40).

No assumptions on how fy,...,f; are related to each other!



ONLINE OPTIMIZATION EXAMPLE

Ul design via online optimization.

- Parameter vector #): some encoding of the layout at step i.

- Functions fi,....fz fi(6¥) = 1if user does not click ‘add to
cart’ and £;(61")) = 0 if they do click.

- Want to maximize number of purchases. l.e, minimize

Gy 5



ONLINE OPTIMIZATION EXAMPLE

Home pricing tools.

linear model
(%, 6)

) $275,000

X = [#baths, #beds, #floors ...]

- Parameter vector 00): coefficients of linear model at step i.

- Functions fi,....fe £i(60) = ((x;,01) — price;)? revealed
when home; is listed or sold.

- Want to minimize total squared error L, f;(91)) (same as
classic least squares regression).



REGRET

In normal optimization, we seek 8 satisfying:

e is called the regret.

- This error metric is a bit ‘unfair. Why?

- Comparing online solution to best fixed solution in
hindsight. e can be negative!



INTUITION CHECK

What if for i =1,...,t, fi(9) = |[x —1000| or f;(6) = |x + 1000] in
an alternating pattern?

How small can the regret e be? 3>t fi(60)) < 2L £i(6°F) + e
What if for i =1,...,t, fi(#) = |x — 1000] or f;j(#) = |x + 1000 in

no particular pattern? How can any online learning algorithm
hope to achieve small regret?



ONLINE GRADIENT DESCENT

Assume that:

* f1,...,fr are all convex.
+ Each f; is G-Lipschitz (i.e, |Vfi(6)], < G for all 4.)

- |6 — 6|, < R where 6(') is the first vector chosen.
Online Gradient Descent
. i - _R_
Set step sizen = N
- Fori=1,...,t
+ Play 61 and incur cost f;(6).

—»

. U+ — gl —n- ﬁfl,(é’(i))



ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point 8() within

radius R of #7, using step size = %, has regret bounded by:

=1

lifi(a(i)) - thfi(f)"ff)} < RGVt

Average regret goes to 0 and t — co. No assumptions on fy,...,f:!

Step 1.1: For all i, Vf;(60)) (6 — o) < Hew—90ff|\§—27|]\9<'+”—90ff”; + 18,

Convexity = Step 1: For all |,

. (i) — goff)|12 — ||p(i+1) _ goff||2 2
ﬁ(g(’))_fl_(@off) < |0 0|3 240 03 n %




ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fy, ..., ft, OGD initialized vvith starting point () within
radius R of #7, using step size = G\/, has regret bounded by:

lifi(a(i)) - iﬁ(e"ff)l < RGVt

i=1

Step 1: For all i, f;(60) — f;(6°7) < 16061166 ”G =

2n

t

¢ :
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STOCHASTIC GRADIENT DESCENT

Stochastic gradient descent is an efficient offline optimization
method, seeking 4 with

— -,

flh) < mejnf(e) +e=f(6*)+e.

- The most popular optimization method in modern machine
learning.

- Easily analyzed as a special case of online gradient descent!



STOCHASTIC GRADIENT DESCENT

Assume that:
+ fis convex and decomposable as f() = 37, f;(9).
- Eg, L(M—Z” 0(6,%).
- Each f; is S-Lipschitz (i.e, |Vf;(8)]]» < & for all §.)
- What does this imply about how Llpsch\tzfis?

- Initialize with 8 satisfying |0\ — 6*||, < R.
Stochastic Gradient Descent

- Setstep sizen =

&\’J

- Fori=1,...,t
- Pick |andon jiel ..., n.
. 9/+1 9 _nlff“(é’(i))
1t gl
- Return 0 = 150 0U)
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STOCHASTIC GRADIENT DESCENT

Stochastic Gradient Descent

‘Batch' Gradient Descent

-10

0 s00 1000 1500 2000 2500 3000 3500

.
I

G+ = ) — . F (G0 vs. G+ = gU) — ). TF(AD)
Note that: E[VF; (61))] = 1VA(HW).

Analysis extends to any algorithm that takes the gradient step
in expectation (batch GD, randomly quantized, measurement
noise, differentially private, etc.) 14



TEST OF INTUITION

What does f1(0) + f2(6) + f3(6) look like?
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A sum of convex functions is always convex (good exercise).
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> RZGZ iterations, n = GJ, and starting point within radius R
of 6%, outputsesatlsfymg E[f(9)] < f(6*) +

step 1: f(9) — f(6°) < 1 S [[(0) - f(6°)]
Step 2: E[f(0) —f(6")] < § - E [ [, (00) — £ (67)]] -
Step 3: E[f(0) — f(67)] < 2 -E [Z, (00 — (901‘1‘)]}

Step 4: E[f(7) — f(0)] < 2R~ V= £
N——

OGD bound
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SGD VS. GD

Stochastic gradient descent generally makes more iterations
than gradient descent.

Each iteration is much cheaper (by a factor of n).

vZf, vs. Vfi(6)

17



SGD VS. GD

When f(0) = YL, £(8) and | V£(0)]> < &:

Theorem - SGD: After ¢ > “© iterations outputs @ satisfying:

E[f()] < f(6") + e

When [|Vf(0)]; < G:

Theorem - GD: After t > — iterations outputs @ satisfying:

f(B) < f(07) +e.

IVAG)l2 = IVFO) + ... + VEa(B)l2 < S/ IVl < n- § <G.

When would this bound be tight?



RANDOMIZED METHODS

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale — set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

- Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms.

- In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.
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DIMENSIONALITY REDUCTION

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/e?)
dimensions while preserving pairwise distances.

- Connections to the weird geometry of high-dimensional space.

- Dimensionality reduction via low-rank approximation and optimal
solution with PCA/eigendecomposition/SVD.

- Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

- Spectral graph theory — nonlinear dimension reduction and
spectral clustering for community detection.

- In the process covered linear algebraic tools that are very broadly
useful in ML and data science: eigendecomposition, singular value

decomposition, projection, norm transformations.
20



CONTINUOUS OPTIMIZATION

Foundations of continuous optimization and gradient descent.

- Motivation for continuous optimization as loss minimization in ML.
Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

- How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

- Simple extension to projected gradient descent for optimization
over a convex constraint set..

- Online optimization and online gradient descent.

- Lots that we didn't cover: stochastic gradient descent, accelerated
methods, adaptive methods, second order methods
(quasi-Newton methods), practical considerations. Gave
mathematical tools to understand these methods.
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Thanks for a great semester!
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