
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Spring 2020.
Lecture 24 (Final Lecture!)

0

logistics

• Problem Set 4 is due Sunday 5/3 at 8pm.
• Exam is at 2pm on May 6th. Open note, similar to midterm.
• Exam review guide and practice problems have been posted
under the schedule tab on the course page.

• I will hold usual office hours today and exam review office
hours this Thursday and next Tuesday during the regular
class time 11:30am-12:45pm

• Regular SRTI’s are suspended this semester. But I am
holding an optional SRTI for this class and would really
appreciate your feedback.

• http://owl.umass.edu/partners/
courseEvalSurvey/uma/.

1

http://owl.umass.edu/partners/courseEvalSurvey/uma/
http://owl.umass.edu/partners/courseEvalSurvey/uma/

summary

Last Class:

• Analysis of gradient descent for optimizing convex functions.

• (The same) analysis of projected gradient descent for optimizing
under (convex) constraints.

• Convex sets and projection functions.

This Class:

• Online learning, regret, and online gradient descent.

• Application to analysis of stochastic gradient descent (if time).

• Course summary/wrap-up

2

online gradient descent

In reality many learning problems are online.

• Websites optimize ads or recommendations to show users, given
continuous feedback from these users.

• Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

• Face recognition systems, other classification systems, learn from
mistakes over time.

Want to minimize some global loss L(θ⃗, X) =
∑n

i=1 ℓ(θ⃗, x⃗i), when data
points are presented in an online fashion x⃗1, x⃗2, . . . , x⃗n (like in
streaming algorithms)

Stochastic gradient descent is a special case: when data points are
considered a random order for computational reasons.

3

online optimization formal setup

Online Optimization: In place of a single function f, we see a
different objective function at each step:

f1, . . . , ft : Rd → R

• At each step, first pick (play) a parameter vector θ⃗(i).
• Then are told fi and incur cost fi(θ⃗(i)).
• Goal: Minimize total cost

∑t
i=1 fi(θ⃗(i)).

No assumptions on how f1, . . . , ft are related to each other!

4

online optimization example

UI design via online optimization.

• Parameter vector θ⃗(i): some encoding of the layout at step i.
• Functions f1, . . . , ft: fi(θ⃗(i)) = 1 if user does not click ‘add to
cart’ and fi(θ⃗(i)) = 0 if they do click.

• Want to maximize number of purchases. I.e., minimize∑t
i=1 fi(θ⃗(i))

5

online optimization example

Home pricing tools.

• Parameter vector θ⃗(i): coefficients of linear model at step i.
• Functions f1, . . . , ft: fi(θ⃗(i)) = (⟨⃗xi, θ⃗(i)⟩ − pricei)2 revealed
when homei is listed or sold.

• Want to minimize total squared error
∑t

i=1 fi(θ⃗(i)) (same as
classic least squares regression).

6

regret

In normal optimization, we seek θ̂ satisfying:

f(θ̂) ≤ min
θ⃗
f(θ⃗) + ϵ.

In online optimization we will ask for the same.

t∑
i=1

fi(θ⃗(i)) ≤ min
θ⃗

t∑
i=1

fi(θ⃗) + ϵ =
t∑
i=1

fi(θ⃗off) + ϵ

ϵ is called the regret.

• This error metric is a bit ‘unfair’. Why?
• Comparing online solution to best fixed solution in
hindsight. ϵ can be negative!

7

intuition check

What if for i = 1, . . . , t, fi(θ) = |x− 1000| or fi(θ) = |x+ 1000| in
an alternating pattern?

How small can the regret ϵ be?
∑t

i=1 fi(θ⃗(i)) ≤
∑t

i=1 fi(θ⃗off) + ϵ.

What if for i = 1, . . . , t, fi(θ) = |x− 1000| or fi(θ) = |x+ 1000| in
no particular pattern? How can any online learning algorithm
hope to achieve small regret?

8

online gradient descent

Assume that:

• f1, . . . , ft are all convex.
• Each fi is G-Lipschitz (i.e., ∥∇⃗fi(θ⃗)∥2 ≤ G for all θ⃗.)
• ∥θ⃗(1) − θ⃗off∥2 ≤ R where θ(1) is the first vector chosen.

Online Gradient Descent

• Set step size η = R
G
√
t .

• For i = 1, . . . , t
• Play θ⃗(i) and incur cost fi(θ⃗(i)).
• θ⃗(i+1) = θ⃗(i) − η · ∇⃗fi(θ⃗(i))

9

online gradient descent analysis

Theorem – OGD on Convex Lipschitz Functions: For convex G-
Lipschitz f1, . . . , ft, OGD initialized with starting point θ(1) within
radius R of θoff, using step size η = R

G
√
t , has regret bounded by:[t∑

i=1

fi(θ(i))−
t∑
i=1

fi(θoff)
]
≤ RG

√
t

Average regret goes to 0 and t→ ∞. No assumptions on f1, . . . , ft!

Step 1.1: For all i, ∇fi(θ(i))(θ(i) − θoff) ≤ ∥θ(i)−θoff∥22−∥θ(i+1)−θoff∥22
2η + ηG2

2 .

Convexity =⇒ Step 1: For all i,

fi(θ(i))− fi(θoff) ≤
∥θ(i) − θoff∥22 − ∥θ(i+1) − θoff∥22

2η +
ηG2
2 .

10

online gradient descent analysis

Theorem – OGD on Convex Lipschitz Functions: For convex G-
Lipschitz f1, . . . , ft, OGD initialized with starting point θ(1) within
radius R of θoff, using step size η = R

G
√
t , has regret bounded by:[t∑

i=1

fi(θ(i))−
t∑
i=1

fi(θoff)
]
≤ RG

√
t

Step 1: For all i, fi(θ(i))− fi(θoff) ≤ ∥θ(i)−θoff∥22−∥θ(i+1)−θoff∥22
2η + ηG2

2 =⇒[t∑
i=1

fi(θ(i))−
t∑
i=1

fi(θoff)
]
≤

t∑
i=1

∥θ(i) − θoff∥22 − ∥θ(i+1) − θoff∥22
2η +

t · ηG2
2 .

11

stochastic gradient descent

Stochastic gradient descent is an efficient offline optimization
method, seeking θ̂ with

f(θ̂) ≤ min
θ⃗
f(θ⃗) + ϵ = f(θ⃗∗) + ϵ.

• The most popular optimization method in modern machine
learning.

• Easily analyzed as a special case of online gradient descent!

12

stochastic gradient descent

Assume that:

• f is convex and decomposable as f(θ⃗) =
∑n

j=1 fj(θ⃗).
• E.g., L(θ⃗, X) =

∑n
j=1 ℓ(θ⃗, x⃗j).

• Each fj is G
n -Lipschitz (i.e., ∥∇⃗fj(θ⃗)∥2 ≤

G
n for all θ⃗.)

• What does this imply about how Lipschitz f is?
• Initialize with θ(1) satisfying ∥θ⃗(1) − θ⃗∗∥2 ≤ R.

Stochastic Gradient Descent

• Set step size η = R
G
√
t .

• For i = 1, . . . , t
• Pick random ji ∈ 1, . . . ,n.
• θ⃗(i+1) = θ⃗(i) − η · ∇⃗fji(θ⃗(i))

• Return θ̂ = 1
t
∑t

i=1 θ⃗
(i).

13

stochastic gradient descent

θ⃗(i+1) = θ⃗(i) − η · ∇⃗fji(θ⃗
(i)) vs. θ⃗(i+1) = θ⃗(i) − η · ∇⃗f(θ⃗(i))

Note that: E[∇⃗fji(θ⃗
(i))] = 1

n∇⃗f(θ⃗
(i)).

Analysis extends to any algorithm that takes the gradient step
in expectation (batch GD, randomly quantized, measurement
noise, differentially private, etc.) 14

test of intuition

What does f1(θ) + f2(θ) + f3(θ) look like?

-10 -5 0 5 10

0

2000

4000

6000

8000

10000

12000

f
1

f
2

f
3

-10 -5 0 5 10

0

2000

4000

6000

8000

10000

12000

f
1

f
2

f
3

A sum of convex functions is always convex (good exercise). 15

stochastic gradient descent analysis

Theorem – SGD on Convex Lipschitz Functions: SGD run with
t ≥ R2G2

ϵ2 iterations, η = R
G
√
t , and starting point within radius R

of θ∗, outputs θ̂ satisfying: E[f(θ̂)] ≤ f(θ∗) + ϵ.

Step 1: f(θ̂)− f(θ∗) ≤ 1
t
∑t

i=1[f(θ(i))− f(θ∗)]

Step 2: E[f(θ̂)− f(θ∗)] ≤ n
t · E

[∑t
i=1[fji(θ(i))− fji(θ∗)]

]
.

Step 3: E[f(θ̂)− f(θ∗)] ≤ n
t · E

[∑t
i=1[fji(θ(i))− fji(θoff)]

]
.

Step 4: E[f(θ̂)− f(θ∗)] ≤ n
t · R · Gn ·

√
t︸ ︷︷ ︸

OGD bound

= RG√
t .

16

sgd vs. gd

Stochastic gradient descent generally makes more iterations
than gradient descent.

Each iteration is much cheaper (by a factor of n).

∇⃗
n∑
j=1

fj(θ⃗) vs. ∇⃗fj(θ⃗)

17

sgd vs. gd

When f(θ⃗) =
∑n

j=1 fj(θ⃗) and ∥∇⃗fj(θ⃗)∥2 ≤ G
n :

Theorem – SGD: After t ≥ R2G2
ϵ2 iterations outputs θ̂ satisfying:

E[f(θ̂)] ≤ f(θ∗) + ϵ.

When ∥∇⃗f(θ⃗)∥2 ≤ Ḡ:

Theorem – GD: After t ≥ R2Ḡ2
ϵ2 iterations outputs θ̂ satisfying:

f(θ̂) ≤ f(θ∗) + ϵ.

∥∇⃗f(θ⃗)∥2 = ∥∇⃗f1(θ⃗) + . . .+ ∇⃗fn(θ⃗)∥2 ≤
∑n

j=1 ∥∇⃗fj(θ⃗)∥2 ≤ n · Gn ≤ G.

When would this bound be tight?

18

randomized methods

Randomization as a computational resource for massive datasets.

• Focus on problems that are easy on small datasets but hard at
massive scale – set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

• Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms.

• In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.

19

dimensionality reduction

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(logn/ϵ2)
dimensions while preserving pairwise distances.

• Connections to the weird geometry of high-dimensional space.
• Dimensionality reduction via low-rank approximation and optimal
solution with PCA/eigendecomposition/SVD.

• Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

• Spectral graph theory – nonlinear dimension reduction and
spectral clustering for community detection.

• In the process covered linear algebraic tools that are very broadly
useful in ML and data science: eigendecomposition, singular value
decomposition, projection, norm transformations.

20

continuous optimization

Foundations of continuous optimization and gradient descent.

• Motivation for continuous optimization as loss minimization in ML.
Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

• How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

• Simple extension to projected gradient descent for optimization
over a convex constraint set..

• Online optimization and online gradient descent.
• Lots that we didn’t cover: stochastic gradient descent, accelerated
methods, adaptive methods, second order methods
(quasi-Newton methods), practical considerations. Gave
mathematical tools to understand these methods.

21

Thanks for a great semester!

22

