COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Spring 2020.
Lecture 22

LOGISTICS

- Problem Set 4 on Spectral Methods/Optimization due
Wednesday 4/29. Can submit until Sunday 5/3 at 8pm.

- Shorter than the first 3. | may assign some additional extra
credit, depending on what we cover in the next few classes.

SUMMARY

Last Class:

- Finish up power method - Krylov methods and connection
to random walks.

- Start on continuous optimization.
This Class:

- Gradient descent.
- Motivation as a greedy method

- Start on analysis for convex functions.

CONTINUOUS OPTIMIZATION

Given some function f: R? — R, find 4, with:

—

f(6.) ngﬂf()-

- Typically up to some small approximation factor: i.e,, find §
with f(f) = ming_g f(0) + €
- Often under some constraints:
H9||z <1, 6] <.
- AG<b, 67A0> 0.
- Tg=x) <c

MULTIVARIATE CALCULUS REVIEW

Let & € R? denote the it standard basis vector,
& =10,0,1,0,0,...,0]

1at position i

Partial Derivative:

of i [0+ &) —f6)
|

89() e—0 €
Directional Derivative:

Dy f(8) = lim
e—0

A6+ &) — f(6)

MULTIVARIATE CALCULUS REVIEW

Gradient: Just a ‘list’ of the partial derivatives.
of
a0(1
o)

Vo) = | 7
o
00(d)

Directional Derivative in Terms of the Gradient:

=

A — i FO+ V(- V() + 6, -V(2) + ...+ 84 U(d) — ()

o41) = iy :
o O Of o Of
~ () 90(1) "V2) 80(2) mee V) 90(d)
— (7, 9f(6))

FUNCTION ACCESS

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(f) for any 6.
Gradient Evaluation: Can compute V£(4) for any 6.

In neural networks:

- Function evaluation is called a forward pass (propogate an
input through the network).

- Gradient evaluation is called a backward pass (compute the
gradient via chain rule, using backpropagation).

GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*4) and
labels ya, ..., v, (the entries of § € R") , find 6, minimizing:

n
g =3 (7%~ 1) = X7~ 2.

i=1

By Chain rule:

8LX37<§) anz' (% y[) o (0% - y)

= U aa0)
=> 2 (9_% —y,-) Xi())
i=1

AT . T o T
9 <9 Xi y‘) _ 8(65(,) — lim (9 + ee,-)Tx,- — QTX,‘ — lim €e]TXi

3§(j) o6(j) e—0 € e—0 €

GRADIENT EXAMPLE

Partial derivative for least squares regression:

ZH:Z (9 Xi— y,)x,(j).

6LX (0

n
ﬁny(g) = 22 . (éT)?, — y,))_(',

= 2xT X0 — §)).

GRADIENT EXAMPLE

Gradient for least squares regression via linear algebraic approach:

Vix(0) = VI|X6 73

GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 6, in each iteration let 6., = 6; + nv, where 7 is a (small)
‘step size’ and Vis a direction chosen to minimize f(@ + V).

]c(_') elﬁof(a—"_evf)_f()D f() EHO €+E\7) f
So for small :
f(11) = f(6) = f(0; + nV) — f(6) ~ 0 - Def(0))
= - (V,Vf(6)).

We want to choose V minimizing (v, Vf(;)) - i.e, pointing in the
direction of ﬁf(é}) but with the opposite sign.

GRADIENT DESCENT PSUEDOCODE

Gradient Descent

- Choose some initialization 51
- Fori=1,...,t—1
' 9_;+1 = 9_; - va((z‘)
- Return § = arg min@f(@), as an approximate minimizer.

Step size i is chosen ahead of time or adapted during the
algorithm (details to come.)

- For now assume 7 stays the same in each iteration.

1

BeER Vf(O) ER

f(6)

f(6)

- 1
1
x

0*

Gradient Descent Update: ., = 0;

0*

CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, gradient descent will
converge to a approximate minimizer 6 with:

fB) <f(0.) + e = mginf(e") +e

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent
will converge to a approximate stationary point 8 with:

IVFO)I2 < e.

Examples: neural networks, clustering, mixture models.

13

STATIONARY POINT VS. LOCAL MINIMUM

Why for non-convex functions do we only guarantee
convergence to a approximate stationary point rather than an
approximate local minimum?

' r

N £(6) £(6)

s
A
y

o 6"

14

WELL-BEHAVED FUNCTIONS

PeER Vf(O)eER

f(6)

Y 9*
—

Gradient Descent Update: 6, = 6; — Vf(0})

15

WELL-BEHAVED FUNCTIONS

Both Convex and Non-convex: Need to assume the function is
well-behaved in some way.

- Lipschitz (size of gradient is bounded): There is some G s.t.:

VO |[VfO)o < G vh, 0, [f(61) —f(8)] < G- 16 — bl

-+ Smooth/Lipschitz gradient (direction/size of gradient is not
changing too quickly): There is some 8 st

V61,0, : [[Vf(61) = Vf(0:)2 < B 161 — Ol

16

Gradient Descent analysis for convex functions.

17

CONVEXITY

Definition — Convex Function: A function f: R — R is convex
if and only if, for any 6,6, € RY and X € [0,1]:

(1= X)fB) + A f@) = F((1=2) - 61+ A 6)

f(6)

A

|

CONVEXITY

Corollary - Convex Function: A function f: R? — R is convex if
and only if, for any 6,6, € R? and X € [0,1]:

= —n

f8:) —£81) = V@) (6, - &)

f(6)

A

|

GD ANALYSIS — CONVEX FUNCTIONS

Assume that:

- fis convex.

- fis G Lipschitz (| Vf(8)|» < G for all §).

- |67 — 6.2 < R where 6; is the initialization point.
Gradient Descent

R

- Choose some initialization ; and set n=;
- Fori=1,...,t—1
: é;+1 = 97 - va(/;s)

%

—

- Return § = arg ming g f(6h).

20

GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > g iterations, n =

R
R GVt
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f0.) +e.

Step 1: For alli, f(6;) — f(0.) < 10=Clicl0wi=0ull | 6 yjgy 51y,

21

GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > g iterations, n =

R
R GVt
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f0.) +e.

Step 1: For all i, f(6;) — f(6«) < ”‘9’79*“5727‘19‘”79*“5 + ”%7 Formally:

22

GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > g iterations, n =

R
~ G\/7y
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f(6.) +e.

Step 1: For all i, f(6;) — f(0.) < ”0’79*“5529‘”79*‘@ + ”%2

Step 1.1: Vf(6)'(6; — 6,) < W=0elizl0anz0ell | G . step 1,

23

GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > g iterations, n =

R
~ G\/7y
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f(6.) +e.

. _ 2_ _ 2 2
Step 1: For all i, f(0)) — fi9.) < 1=l l0m=0-b 4 nG

Step 2: 1 X f(6) — f(0.) < £ + %5

24

GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > g iterations, n =

R
R GVt
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f0.) +e.

Step 2: { 30, f(6) — f(6.) < 55 + 5.

25

Questions on Gradient Descent?

26

CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

6" = argminf(0),
0eS

where S is a convex set.

Definition - Convex Set: A set S C RY is convex if and only if,
for any 65,6, € S and A € [0, 1]:

(=N +r-6,€8

Eg S={0ecR?:|d], <1}

27

PROJECTED GRADIENT DESCENT

For any convex set let Ps(-) denote the projection function onto S.

* Ps(¥) = argming_ |16 — ¥ll..
“ For S ={f e R?: ||§]|, < 1} whatis Ps(¥)?

» For S being a k dimensional subspace of RY, what is Ps(V)?

Projected Gradient Descent

- Choose some initialization ; and set 5 = ci\/z‘

- Fori=1,...,t—1
- g =G — - VAG)
I le(/)“ k‘”yh‘))-

* Return 6 = argmin; f(6,).

28

PROJECTED GRADIENT DESCENT

Visually:

29

CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient
descent!

Theorem - Projection to a convex set: For any convex set S C
RY JeRY andf e s,

IPs(¥) = 6l < |IY - 6ll..

30

PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > &S jterations, 5 = %,

€2

and starting point within radius R of 6,, outputs 8 satisfying:

f(6) < f(6.) +e= minf(9) + e

\.

Recall: 614" = 6, — - Vf(6;) and 6,41 = Ps(61%4").

_ 2__plout) 2
Step 1: For all i, f(6)) — f(6.) < 12221 2”:“1 il #

Step 1.a: For all i, f(6) — f(6+) < He"*e*”%}lle’“*e*”% + ’7762

Step 2: %ZLW f6) —1(0.) < % + ’7762 = Theorem.

31

