COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Spring 2020.

Lecture 22

LOGISTICS

- Problem Set 4 on Spectral Methods/Optimization due Wednesday 4/29. Can submit until Sunday 5/3 at 8pm.
- Shorter than the first 3. I may assign some additional extra credit, depending on what we cover in the next few classes.

Last Class:

- Finish up power method Krylov methods and connection to random walks.
- · Start on continuous optimization.

This Class:

- · Gradient descent.
- · Motivation as a greedy method
- · Start on analysis for convex functions.

Given some function $f: \mathbb{R}^d \to \mathbb{R}$, find $\vec{\theta}_{\star}$ with:

$$f(\vec{\theta}_{\star}) = \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}).$$

- Typically up to some small approximation factor: i.e., find $\hat{\theta}$ with $f(\hat{\theta}) = \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$
- · Often under some constraints:
 - $\|\vec{\theta}\|_2 \le 1, \|\vec{\theta}\|_1 \le 1.$
 - $\cdot \ \overrightarrow{A}\overrightarrow{\theta} \leq \overrightarrow{b}, \ \overrightarrow{\theta}^{\mathsf{T}} \overrightarrow{A}\overrightarrow{\theta} \geq 0.$
 - $\vec{1}^T \vec{\theta} = \sum_{i=1}^d \vec{\theta}(i) \le c.$

MULTIVARIATE CALCULUS REVIEW

Let $\vec{e}_i \in \mathbb{R}^d$ denote the i^{th} standard basis vector, $\vec{e}_i = \underbrace{[0,0,1,0,0,\ldots,0]}_{1 \text{ at position } i}$.

Partial Derivative:

$$\frac{\partial f}{\partial \vec{\theta}(i)} = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \cdot \vec{e}_i) - f(\vec{\theta})}{\epsilon}.$$

Directional Derivative:

$$D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \vec{v}) - f(\vec{\theta})}{\epsilon}.$$

Gradient: Just a 'list' of the partial derivatives.

$$\vec{\nabla}f(\vec{\theta}) = \begin{bmatrix} \frac{\partial f}{\partial \vec{\theta}(1)} \\ \frac{\partial f}{\partial \vec{\theta}(2)} \\ \vdots \\ \frac{\partial f}{\partial \vec{\theta}(d)} \end{bmatrix}$$

Directional Derivative in Terms of the Gradient:

$$D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \vec{v}(\vec{e}_1 \cdot \vec{v}(1) + \vec{e}_2 \cdot \vec{v}(2) + \dots + \vec{e}_d \cdot \vec{v}(d)) - f(\vec{\theta})}{\epsilon}$$

$$\approx \vec{v}(1) \cdot \frac{\partial f}{\partial \vec{\theta}(1)} + \vec{v}(2) \cdot \frac{\partial f}{\partial \vec{\theta}(2)} + \dots + \vec{v}(d) \cdot \frac{\partial f}{\partial \vec{\theta}(d)}$$

$$= \langle \vec{v}, \vec{\nabla} f(\vec{\theta}) \rangle.$$

FUNCTION ACCESS

Often the functions we are trying to optimize are very complex (e.g., a neural network). We will assume access to:

Function Evaluation: Can compute $f(\vec{\theta})$ for any $\vec{\theta}$.

Gradient Evaluation: Can compute $\vec{\nabla} f(\vec{\theta})$ for any $\vec{\theta}$.

In neural networks:

- Function evaluation is called a forward pass (propogate an input through the network).
- Gradient evaluation is called a backward pass (compute the gradient via chain rule, using backpropagation).

Running Example: Least squares regression.

Given input points $\vec{x}_1, \dots, \vec{x}_n$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels y_1, \dots, y_n (the entries of $\vec{y} \in \mathbb{R}^n$), find $\vec{\theta}_*$ minimizing:

$$L_{X,\vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} (\vec{\theta}^{T}\vec{x}_{i} - y_{i})^{2} = ||X\vec{\theta} - \vec{y}||_{2}^{2}.$$

By Chain rule:

$$\frac{\partial L_{\mathbf{X}, \vec{\mathbf{y}}}(\vec{\theta})}{\partial \vec{\theta}(j)} = \sum_{i=1}^{n} 2 \cdot \left(\vec{\theta}^{\mathsf{T}} \vec{\mathbf{x}}_{i} - \mathbf{y}_{i} \right) \cdot \frac{\partial \left(\vec{\theta}^{\mathsf{T}} \vec{\mathbf{x}}_{i} - \mathbf{y}_{i} \right)}{\partial \vec{\theta}(j)}$$

$$= \sum_{i=1}^{n} 2 \cdot \left(\vec{\theta}^{\mathsf{T}} \vec{\mathbf{x}}_{i} - \mathbf{y}_{i} \right) \vec{\mathbf{x}}_{i}(j)$$

$$\frac{\partial \left(\vec{\theta}^{\mathsf{T}} \vec{\mathbf{x}}_{i} - \mathbf{y}_{i} \right)}{\partial \vec{\theta}(j)} = \lim_{\epsilon \to 0} \frac{(\theta + \epsilon \vec{e}_{j})^{\mathsf{T}} \vec{\mathbf{x}}_{i} - \theta^{\mathsf{T}} \vec{\mathbf{x}}_{i}}{\epsilon} = \lim_{\epsilon \to 0} \frac{\epsilon \vec{e}_{j}^{\mathsf{T}} \vec{\mathbf{x}}_{i}}{\epsilon} = \vec{\mathbf{x}}_{i}(j).$$

Partial derivative for least squares regression:

$$\frac{\partial L_{\mathbf{X},\vec{y}}(\vec{\theta})}{\partial \vec{\theta}(j)} = \sum_{i=1}^{n} 2 \cdot \left(\vec{\theta}^{T} \vec{x}_{i} - y_{i} \right) \vec{x}_{i}(j).$$

$$\vec{\nabla} L_{\mathbf{X},\vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} 2 \cdot \left(\vec{\theta}^{T} \vec{x}_{i} - y_{i} \right) \vec{x}_{i}$$

$$= 2\mathbf{X}^{T} (\mathbf{X} \vec{\theta} - \vec{y}).$$

GRADIENT EXAMPLE

Gradient for least squares regression via linear algebraic approach:

$$\nabla L_{\mathbf{X},\vec{\mathbf{y}}}(\vec{\theta}) = \nabla \|\mathbf{X}\vec{\theta} - \vec{\mathbf{y}}\|_{2}^{2}$$

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}_1$, in each iteration let $\vec{\theta}_{i+1} = \vec{\theta}_i + \eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f(\vec{\theta}_i + \eta \vec{v})$.

$$D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \vec{v}) - f(\vec{\theta})}{\epsilon} . D_{\vec{v}} f(\vec{\theta}_i) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta}_i + \epsilon \vec{v}) - f(\vec{\theta}_i)}{\epsilon} .$$

So for small η :

$$f(\vec{\theta}_{i+1}) - f(\vec{\theta}_i) = f(\vec{\theta}_i + \eta \vec{v}) - f(\vec{\theta}_i) \approx \eta \cdot D_{\vec{v}} f(\vec{\theta}_i)$$
$$= \eta \cdot \langle \vec{v}, \vec{\nabla} f(\vec{\theta}_i) \rangle.$$

We want to choose \vec{v} minimizing $\langle \vec{v}, \vec{\nabla} f(\vec{\theta_i}) \rangle$ – i.e., pointing in the direction of $\vec{\nabla} f(\vec{\theta_i})$ but with the opposite sign.

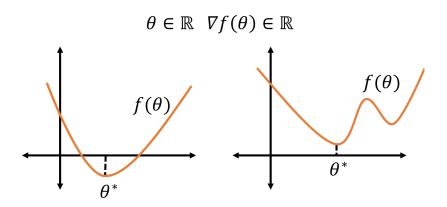
GRADIENT DESCENT PSUEDOCODE

Gradient Descent

- · Choose some initialization $\vec{\theta}_1$.
- For i = 1, ..., t 1
 - $\cdot \vec{\theta}_{i+1} = \vec{\theta}_i \eta \nabla f(\vec{\theta}_i)$
- · Return $\hat{\theta} = \arg\min_{\vec{\theta_i}} f(\vec{\theta_i})$, as an approximate minimizer.

Step size η is chosen ahead of time or adapted during the algorithm (details to come.)

 \cdot For now assume η stays the same in each iteration.



Gradient Descent Update: $\vec{\theta_{i+1}} = \vec{\theta_{i}} - \eta \nabla f(\vec{\theta_{i}})$

CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, gradient descent will converge to a approximate minimizer $\hat{\theta}$ with:

$$f(\hat{\theta}) \le f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

Examples: least squares regression, logistic regression, sparse regression (lasso), regularized regression, SVMS,...

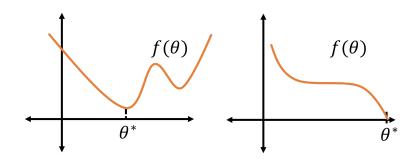
Non-Convex Functions: After sufficient iterations, gradient descent will converge to a approximate stationary point $\hat{\theta}$ with:

$$\|\nabla f(\hat{\theta})\|_2 \leq \epsilon.$$

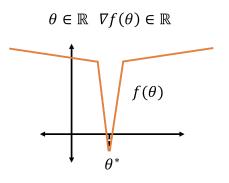
Examples: neural networks, clustering, mixture models.

STATIONARY POINT VS. LOCAL MINIMUM

Why for non-convex functions do we only guarantee convergence to a approximate stationary point rather than an approximate local minimum?



WELL-BEHAVED FUNCTIONS



Gradient Descent Update: $\vec{\theta}_{i+1} = \vec{\theta}_i - \eta \nabla f(\vec{\theta}_i)$

Both Convex and Non-convex: Need to assume the function is well-behaved in some way.

· Lipschitz (size of gradient is bounded): There is some G s.t.:

$$\forall \vec{\theta}: \quad \|\vec{\nabla} f(\vec{\theta})\|_2 \leq G \Leftrightarrow \forall \vec{\theta}_1, \vec{\theta}_2: \quad |f(\vec{\theta}_1) - f(\vec{\theta}_2)| \leq G \cdot \|\vec{\theta}_1 - \vec{\theta}_2\|_2$$

• Smooth/Lipschitz gradient (direction/size of gradient is not changing too quickly): There is some β s.t.:

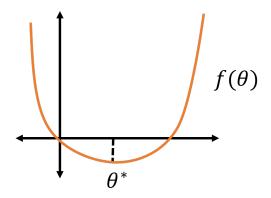
$$\forall \vec{\theta_1}, \vec{\theta_2}: \quad \|\vec{\nabla}f(\vec{\theta_1}) - \vec{\nabla}f(\vec{\theta_2})\|_2 \le \beta \cdot \|\vec{\theta_1} - \vec{\theta_2}\|_2.$$

Gradient Descent analysis for convex functions.

CONVEXITY

Definition – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

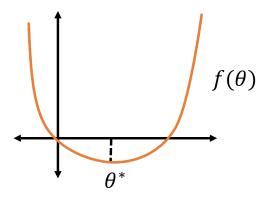
$$(1 - \lambda) \cdot f(\vec{\theta}_1) + \lambda \cdot f(\vec{\theta}_2) \ge f((1 - \lambda) \cdot \vec{\theta}_1 + \lambda \cdot \vec{\theta}_2)$$



CONVEXITY

Corollary – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0,1]$:

$$f(\vec{\theta}_2) - f(\vec{\theta}_1) \ge \vec{\nabla} f(\vec{\theta}_1)^T \left(\vec{\theta}_2 - \vec{\theta}_1\right)$$



GD ANALYSIS - CONVEX FUNCTIONS

Assume that:

- f is convex.
- f is G Lipschitz $(\|\vec{\nabla}f(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$).
- $\|\vec{\theta}_1 \vec{\theta}_*\|_2 \le R$ where $\vec{\theta}_1$ is the initialization point.

Gradient Descent

- · Choose some initialization $\vec{\theta}_1$ and set $\eta = \frac{R}{G\sqrt{t}}$.
- For i = 1, ..., t 1
 - $\cdot \vec{\theta}_{i+1} = \vec{\theta}_i \eta \nabla f(\vec{\theta}_i)$
- · Return $\hat{\theta} = \arg\min_{\vec{\theta}_1,...\vec{\theta}_t} f(\vec{\theta}_i)$.

$$f(\hat{\theta}) \le f(\theta_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$. Visually:

$$f(\hat{\theta}) \le f(\theta_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$. Formally:

$$f(\hat{\theta}) \leq f(\theta_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.1:
$$\nabla f(\theta_i)^{\mathsf{T}}(\theta_i - \theta_*) \leq \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2} \implies \text{Step 1.}$$

$$f(\hat{\theta}) \leq f(\theta_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2} \Longrightarrow$
Step 2: $\frac{1}{t} \sum_{i=1}^{t} f(\theta_i) - f(\theta_*) \le \frac{R^2}{2nt} + \frac{\eta G^2}{2}$.

$$f(\hat{\theta}) \leq f(\theta_*) + \epsilon.$$

Step 2:
$$\frac{1}{t}\sum_{i=1}^{t} f(\theta_i) - f(\theta_*) \leq \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2}$$
.

Questions on Gradient Descent?

CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

$$\theta^* = \arg\min_{\theta \in \mathcal{S}} f(\theta),$$

where S is a convex set.

Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in S$ and $\lambda \in [0,1]$:

$$(1-\lambda)\vec{\theta}_1 + \lambda \cdot \vec{\theta}_2 \in \mathcal{S}$$

E.g.
$$S = {\vec{\theta} \in \mathbb{R}^d : ||\vec{\theta}||_2 \le 1}$$
.

PROJECTED GRADIENT DESCENT

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

- $P_{\mathcal{S}}(\vec{y}) = \operatorname{arg\,min}_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} \vec{y}\|_{2}.$
- For $S = {\vec{\theta} \in \mathbb{R}^d : ||\vec{\theta}||_2 \le 1}$ what is $P_S(\vec{y})$?
- For S being a k dimensional subspace of \mathbb{R}^d , what is $P_S(\vec{y})$?

Projected Gradient Descent

- · Choose some initialization $\vec{ heta_1}$ and set $\eta = \frac{R}{G\sqrt{t}}$
- For i = 1, ..., t 1
 - $\cdot \vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i \eta \cdot \nabla f(\vec{\theta}_i)$
 - $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)}).$
- Return $\hat{\theta} = \arg\min_{\vec{\theta_i}} f(\vec{\theta_i})$.

PROJECTED GRADIENT DESCENT

Visually:

CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient descent!

Theorem – Projection to a convex set: For any convex set $S \subseteq \mathbb{R}^d$, $\vec{y} \in \mathbb{R}^d$, and $\vec{\theta} \in S$,

$$||P_{\mathcal{S}}(\vec{y}) - \vec{\theta}||_2 \le ||\vec{y} - \vec{\theta}||_2.$$

PROJECTED GRADIENT DESCENT ANALYSIS

Theorem – Projected GD: For convex *G*-Lipschitz function f, and convex set S, Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ_* , outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\theta_*) + \epsilon = \min_{\theta \in \mathcal{S}} f(\theta) + \epsilon$$

Recall:
$$\theta_{i+1}^{(out)} = \theta_i - \eta \cdot \nabla f(\theta_i)$$
 and $\theta_{i+1} = P_{\mathcal{S}}(\theta_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1}^{(out)} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.a: For all
$$i, f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$
.

Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\theta_i) - f(\theta_*) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2} \implies$$
 Theorem.