COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Spring 2020.
Lecture 20

LOGISTICS

- Problem Set 3 is due tomorrow at 8pm. Problem Set 4 will be released very shortly.
- This is the last day of our spectral unit. Then will have 4 classes on optimization before end of semester.

SUMMARY

Last Two Classes: Spectral Graph Partitioning

- Focus on separating graphs with small but relatively balanced cuts.
- Connection to second smallest eigenvector of graph Laplacian.
- Provable guarantees for stochastic block model.
- Idealized analysis in class. See slides for full analysis.

This Class: Computing the SVD/eigendecomposition.

- Discuss efficient algorithms for SVD/eigendecomposition.
- Iterative methods: power method, Krylov subspace methods.
- High level: a glimpse into fast methods for linear algebraic computation, which are workhorses behind data science.

EFFICIENT EIGENDECOMPOSITION AND SVD

We have talked about the eigendecomposition and SVD as ways to compress data, to embed entities like words and documents, to compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on massive datasets?

COMPUTING THE SVD

Basic Algorithm: To compute the SVD of full-rank $A \in \mathbb{R}^{n \times d}$, $\mathrm{A}=\boldsymbol{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

- Compute $\mathrm{A}^{\top} \mathrm{A}-\mathrm{O}\left(n d^{2}\right)$ runtime.
- Find eigendecomposition $\mathrm{A}^{\top} \mathrm{A}=\mathbf{V} \boldsymbol{\wedge} \mathrm{V}^{\top}-O\left(d^{3}\right)$ runtime.
- Compute $\mathbf{L}=\mathrm{AV}-\mathrm{O}\left(n d^{2}\right)$ runtime. Note that $\mathrm{L}=\mathbf{U} \boldsymbol{\Sigma}$.
- Set $\sigma_{i}=\left\|\mathbf{L}_{i}\right\|_{2}$ and $\mathbf{U}_{i}=\mathbf{L}_{i} /\left\|\mathbf{L}_{i}\right\|_{2} .-O(n d)$ runtime.

Total runtime: $O\left(n d^{2}+d^{3}\right)=O\left(n d^{2}\right)($ assume w.l.o.g. $n \geq d)$

- If we have $n=10$ million images with $200 \times 200 \times 3=120,000$ pixel values each, runtime is 1.5×10^{17} operations!
- The worlds fastest super computers compute at ≈ 100 petaFLOPS $=10^{17}$ FLOPS (floating point operations per second).
- This is a relatively easy task for them - but no one else.

FASTER ALGORITHMS

To speed up SVD computation we will take advantage of the fact that we typically only care about computing the top (or bottom) k singular vectors of a matrix $X \in \mathbb{R}^{n \times k}$ for $k \ll d$.

- Suffices to compute $\mathrm{V}_{k} \in \mathbb{R}^{d \times k}$ and then compute $\mathbf{U}_{k} \boldsymbol{\Sigma}_{k}=\mathrm{XV}_{k}$.
- Use an iterative algorithm to compute an approximation to the top k singular vectors V_{k}.
- Runtime will be roughly $O(n d k)$ instead of $O\left(n d^{2}\right)$.

Sparse (iterative) vs. Direct Method. svd vs. svds.

POWER METHOD

Power Method: The most fundamental iterative method for approximate SVD. Applies to computing $k=1$ singular vectors, but can easily be generalized to larger k.

Goal: Given $X \in \mathbb{R}^{n \times d}$, with $\operatorname{SVD} X=U \boldsymbol{\Sigma} V$, find $\vec{z} \approx \vec{V}_{1}$.

- Initialize: Choose $\vec{z}^{(0)}$ randomly. E.g. $\vec{z}^{(0)}(i) \sim \mathcal{N}(0,1)$.
- For $i=1, \ldots, t$
- $z^{(i)}=\left(X^{\top} X\right) \cdot z^{(i-1)}$
- $n_{i}=\left\|\vec{z}^{(i)}\right\|_{2}$
- $\vec{z}^{(i)}=z^{(i)} / n_{i}$

Return \vec{z}_{t}

Runtime: 2•nd
Runtime: d
Runtime: d

Total Runtime: O (ndt)

POWER METHOD

Why is it converging towards \vec{v}_{1} ?

POWER METHOD INTUITION

Write $\vec{z}^{(0)}$ in the right singular vector basis:

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} .
$$

Update step: $\vec{z}^{(i)}=\mathbf{X}^{\top} \mathbf{X} \cdot \vec{z}^{(i-1)}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \cdot \vec{z}^{(i-1)}$ (then normalize)

$$
\begin{gathered}
\mathbf{V}^{\top} \vec{z}^{(0)}= \\
\boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \vec{z}^{(0)}= \\
\vec{z}^{(1)}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \cdot \vec{z}^{(0)}=
\end{gathered}
$$

$X \in \mathbb{R}^{n \times d}$: input matrix with SVD $X=U \boldsymbol{\Sigma} V^{\top}$. \vec{v}_{1} : top right singular vector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to $\overrightarrow{\mathrm{v}}_{1}$.

POWER METHOD INTUITION

Claim 1: Writing $\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d}$,

$$
\begin{aligned}
& \vec{z}^{(1)}=c_{1} \cdot \sigma_{1}^{2} \vec{v}_{1}+c_{2} \cdot \sigma_{2}^{2} \vec{V}_{2}+\ldots+c_{d} \cdot \sigma_{d}^{2} \vec{v}_{d} . \\
& \vec{z}^{(2)}=X^{\top} X \vec{Z}^{(1)}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \vec{z}^{(1)}=
\end{aligned}
$$

Claim 2:

$$
\vec{z}^{(t)}=c_{1} \cdot \sigma_{1}^{2 t} \vec{v}_{1}+\mathbf{c}_{2} \cdot \sigma_{2}^{2 t} \vec{v}_{2}+\ldots+c_{d} \cdot \sigma_{d}^{2 t} \vec{v}_{d} .
$$

$X \in \mathbb{R}^{n \times d}$: input matrix with SVD $X=U \boldsymbol{\Sigma} V^{\top}$. \vec{v}_{1} : top right singular vector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the singular values, making the component in the direction of v_{1} much larger, relative to the other components.
$\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \sigma_{1}^{2 t} \vec{v}_{1}+c_{2} \sigma_{2}^{2 t} \vec{v}_{2}+\ldots+c_{d} \sigma_{d}^{2 t} \vec{v}_{d}$

POWER METHOD SLOW CONVERGENCE

Slow Case: X has singular values: $\sigma_{1}=1, \sigma_{2}=.99, \sigma_{3}=.9, \sigma_{4}=.8, \ldots$

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \sigma_{1}^{2 t} \vec{v}_{1}+c_{2} \sigma_{2}^{2 t} \vec{v}_{2}+\ldots+c_{d} \sigma_{d}^{2 t} \vec{v}_{d}
$$

Iteration 0

Iteration 1

POWER METHOD CONVERGENCE RATE

$\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \sigma_{1}^{2 t} \vec{v}_{1}+c_{2} \sigma_{2}^{2 t} \vec{v}_{2}+\ldots+c_{d} \sigma_{d}^{2 t} \vec{v}_{d}$ Write $\sigma_{2}=(1-\gamma) \sigma_{1}$ for 'gap' $\gamma=\frac{\sigma_{1}-\sigma_{2}}{\sigma_{1}}$. How many iterations t does it take to have $\sigma_{2}^{2 t} \leq \frac{1}{2} \cdot \sigma_{1}^{2 t}$? $\mathbf{O}(1 / \gamma)$.
How many iterations t does it take to have $\sigma_{2}^{2 t} \leq \delta \cdot \sigma_{1}^{2 t}$? $\mathbf{O}\left(\frac{\log (1 / \delta)}{\gamma}\right)$. How small must we set δ to ensure that $c_{1} \sigma_{1}^{2 t}$ dominates all other components and so $\vec{z}^{(t)}$ is very close to \vec{v}_{1} ?

RANDOM INITIALIZATION

Claim: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{d} \mathbf{v}_{d}$, with very high probability, for all i :

$$
O\left(1 / d^{2}\right) \leq\left|c_{i}\right| \leq O(\log d)
$$

Corollary:

$$
\max _{j}\left|\frac{c_{j}}{c_{1}}\right| \leq O\left(d^{2} \log d\right)
$$

$X \in \mathbb{R}^{n \times d}$: matrix with SVD $X=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$. Singular values $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{d}$. \vec{v}_{1} : top right singular vector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

RANDOM INITIALIZATION

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)}=c_{1} \mathbf{v}_{1}+\mathbf{c}_{2} \mathbf{v}_{2}+\ldots+c_{d} \mathbf{v}_{d}$, with very high probability, $\max _{j} \frac{c_{j}}{c_{1}} \leq O\left(d^{2} \log d\right)$.

Claim 2: For gap $\gamma=\frac{\sigma_{1}-\sigma_{2}}{\sigma_{1}}$, after $t=O\left(\frac{\log (1 / \delta)}{\gamma}\right)$ iterations: $\vec{z}^{(t)}=c_{1} \sigma_{1}^{2 t} \vec{v}_{1}+c_{2} \sigma_{2}^{2 t} \vec{v}_{2}+\ldots+c_{d} \sigma_{d}^{2 t} \vec{v}_{d} \propto c_{1} \vec{v}_{1}+c_{2} \delta \vec{v}_{2}+\ldots+c_{d} \delta \vec{v}_{d}$ If we set $\delta=O\left(\frac{\epsilon}{d^{3} \log d}\right)$ by Claim 1 will have:

$$
\vec{z}^{(t)} \propto \vec{v}_{1}+\frac{\epsilon}{d}\left(\vec{v}_{2}+\ldots+\vec{v}_{d}\right) .
$$

Gives $\left\|\vec{z}^{(t)}-\vec{v}_{1}\right\|_{2} \leq O(\epsilon)$.
$\mathbf{X} \in \mathbb{R}^{n \times d}$: matrix with SVD $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$. Singular values $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{d}$. \vec{V}_{1} : top right singular vector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)

Let $\gamma=\frac{\sigma_{1}-\sigma_{2}}{\sigma_{1}}$ be the relative gap between the first and second largest singular values. If Power Method is initialized with a random Gaussian vector $\vec{v}^{(0)}$ then, with high probability, after $t=O\left(\frac{\log d / \epsilon}{\gamma}\right)$ steps:

$$
\left\|\vec{z}^{(t)}-\vec{v}_{1}\right\|_{2} \leq \epsilon .
$$

Total runtime: $O(t)$ matrix-vector multiplications.

$$
O\left(n n z(X) \cdot \frac{\log (d / \epsilon)}{\gamma} \cdot\right)=O\left(n d \cdot \frac{\log (d / \epsilon)}{\gamma}\right) .
$$

How is ϵ dependence?
How is γ dependence?

KRYLOV SUBSPACE METHODS

Krylov subspace methods (Lanczos method, Arnoldi method.)

- How svds/eigs are actually implemented. Only need $t=O\left(\frac{\log d / \epsilon}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

Main Idea: Need to separate σ_{1} from σ_{i} for $i \geq 2$.

- Power method: power up to $\sigma_{1}^{2 \cdot t}$ and $\sigma_{i}^{2 \cdot t}$.
- Krylov methods: apply a better degree t polynomial $T_{t}\left(\sigma_{1}^{2}\right)$ and $T_{t}\left(\sigma_{i}^{2}\right)$.
- Still requires just $2 t$ matrix vector multiplies. Why?

KRYLOV SUBSPACE METHODS

Optimal 'jump' polynomial in general is given by a degree t Chebyshev polynomial. Krylov methods find a polynomial tuned to the input matrix that does at least as well.

GENERALIZATIONS TO LARGER k

- Block Power Method aka Simultaneous Iteration aka Subspace Iteration aka Orthogonal Iteration
- Block Krylov methods

$$
\text { Runtime: } O\left(n d k \cdot \frac{\log d / \epsilon}{\sqrt{\gamma}}\right)
$$

to accurately compute the top k singular vectors.

$$
\text { ‘Gapless' Runtime: } O\left(n d k \cdot \frac{\log d / \epsilon}{\sqrt{\epsilon}}\right)
$$

if you just want a set of vectors that gives an ϵ-optimal low-rank approximation when you project onto them.

CONNECTION TO RANDOM WALKS

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at

CONNECTION TO RANDOM WALKS

Let $\vec{p}^{(t)} \in \mathbb{R}^{n}$ have $i^{\text {th }}$ entry $\vec{p}_{i}^{(t)}=\operatorname{Pr}($ walk at node i at step $t)$.

- Initialize: $\vec{p}^{(0)}=[1,0,0, \ldots, 0]$.
- Update:

$$
\begin{aligned}
\operatorname{Pr}(\text { walk at } i \text { at step } t) & =\sum_{j \in \text { neigh(i) }} \operatorname{Pr}(\text { walk at } j \text { at step } t-1) \cdot \frac{1}{\operatorname{degree}(j)} \\
& =\vec{z}^{\top} \vec{p}^{(t-1)}
\end{aligned}
$$

where $\vec{z}(j)=\frac{1}{\text { degree(}()}$ for all $j \in$ neigh $(i), \vec{z}(j)=0$ for all $j \notin$ neigh (i).

- \vec{z} is the $i^{\text {th }}$ row of the right normalized adjacency matrix ${A D^{-1}}^{\text {. }}$.
- $\vec{p}^{(t)}=\mathrm{AD}^{-1} \vec{p}^{(t-1)}=\underbrace{\mathrm{AD}^{-1} \mathrm{AD}^{-1} \ldots \mathrm{AD}^{-1}}_{t \text { times }} \vec{p}^{(0)}$

RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is given by the $i^{\text {th }}$ entry of

$$
\vec{p}^{(t)}=\underbrace{A D^{-1} A D^{-1} \ldots A D^{-1}}_{t \text { times }} \vec{p}^{(0)} .
$$

$$
D^{-1 / 2} \vec{p}^{(t)}=\underbrace{\left(D^{-1 / 2} A D^{-1 / 2}\right)\left(D^{-1 / 2} A D^{-1 / 2}\right) \ldots\left(D^{-1 / 2} A D^{-1 / 2}\right)}_{t \text { times }}\left(D^{-1 / 2} \vec{p}^{(0)}\right)
$$

- $\mathrm{D}^{-1 / 2} \vec{p}^{(t)}$ is exactly what would obtained by applying $t / 2$ iterations of power method to $\mathrm{D}^{-1 / 2} \vec{p}^{(0)}$!
- Will converge to the top singular vector (eigenvector) of the normalized adjacency matrix $D^{-1 / 2} A D^{-1 / 2}$. Stationary distribution.
- Like the power method, the time a random walk takes to converge to its stationary distribution (mixing time) is dependent on the gap between the top two eigenvalues of ${A D^{-1}}^{-1}$. The spectral gap.

