
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Spring 2020.
Lecture 20

0

logistics

• Problem Set 3 is due tomorrow at 8pm. Problem Set 4 will be
released very shortly.

• This is the last day of our spectral unit. Then will have 4
classes on optimization before end of semester.

1

summary

Last Two Classes: Spectral Graph Partitioning

• Focus on separating graphs with small but relatively balanced cuts.

• Connection to second smallest eigenvector of graph Laplacian.

• Provable guarantees for stochastic block model.

• Idealized analysis in class. See slides for full analysis.

This Class: Computing the SVD/eigendecomposition.

• Discuss efficient algorithms for SVD/eigendecomposition.

• Iterative methods: power method, Krylov subspace methods.

• High level: a glimpse into fast methods for linear algebraic
computation, which are workhorses behind data science.

2

efficient eigendecomposition and svd

We have talked about the eigendecomposition and SVD as
ways to compress data, to embed entities like words and
documents, to compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on
massive datasets?

3

computing the svd

Basic Algorithm: To compute the SVD of full-rank A ∈ Rn×d,
A = UΣVT:

• Compute ATA – O(nd2) runtime.
• Find eigendecomposition ATA = VΛVT – O(d3) runtime.
• Compute L = AV – O(nd2) runtime. Note that L = UΣ.
• Set σi = ∥Li∥2 and Ui = Li/∥Li∥2. – O(nd) runtime.

Total runtime: O(nd2 + d3) = O(nd2) (assume w.l.o.g. n ≥ d)

• If we have n = 10 million images with 200× 200× 3 = 120, 000
pixel values each, runtime is 1.5× 1017 operations!

• The worlds fastest super computers compute at ≈ 100 petaFLOPS
= 1017 FLOPS (floating point operations per second).

• This is a relatively easy task for them – but no one else.

4

faster algorithms

To speed up SVD computation we will take advantage of the
fact that we typically only care about computing the top (or
bottom) k singular vectors of a matrix X ∈ Rn×k for k≪ d.

• Suffices to compute Vk ∈ Rd×k and then compute
UkΣk = XVk.

• Use an iterative algorithm to compute an approximation to
the top k singular vectors Vk.

• Runtime will be roughly O(ndk) instead of O(nd2).

Sparse (iterative) vs. Direct Method. svd vs. svds.

5

power method

Power Method: The most fundamental iterative method for
approximate SVD. Applies to computing k = 1 singular vectors,
but can easily be generalized to larger k.

Goal: Given X ∈ Rn×d, with SVD X = UΣV, find z⃗ ≈ v⃗1.

• Initialize: Choose z⃗(0) randomly. E.g. z⃗(0)(i) ∼ N (0, 1).
• For i = 1, . . . , t
• z⃗(i) = (XTX) · z⃗(i−1) Runtime: 2 · nd
• ni = ∥⃗z(i)∥2 Runtime: d
• z⃗(i) = z⃗(i)/ni Runtime: d
Return z⃗t

Total Runtime: O(ndt)
6

power method

Why is it converging towards v⃗1?
7

power method intuition

Write z⃗(0) in the right singular vector basis:

z⃗(0) = c1v⃗1 + c2v⃗2 + . . .+ cdv⃗d.

Update step: z⃗(i) = XTX · z⃗(i−1) = VΣ2VT · z⃗(i−1) (then normalize)

VT⃗z(0) =

Σ2VT⃗z(0) =

z⃗(1) = VΣ2VT · z⃗(0) =

X ∈ Rn×d : input matrix with SVD X = UΣVT . v⃗1 : top right singular vector, being
computed, z⃗(i) : iterate at step i, converging to v⃗1 . 8

power method intuition

Claim 1 : Writing z⃗(0) = c1⃗v1 + c2v⃗2 + . . .+ cdv⃗d,

z⃗(1) = c1 · σ21 v⃗1 + c2 · σ22 v⃗2 + . . .+ cd · σ2dv⃗d.

z⃗(2) = XTX⃗z(1) = VΣ2VT⃗z(1) =

Claim 2:

z⃗(t) = c1 · σ2t1 v⃗1 + c2 · σ2t2 v⃗2 + . . .+ cd · σ2td v⃗d.

X ∈ Rn×d : input matrix with SVD X = UΣVT . v⃗1 : top right singular vector, being
computed, z⃗(i) : iterate at step i, converging to v⃗1 .

9

power method convergence

After t iterations, we have ‘powered’ up the singular values, making
the component in the direction of v1 much larger, relative to the
other components.

z⃗(0) = c1v⃗1 + c2v⃗2 + . . .+ cdv⃗d =⇒ z⃗(t) = c1σ2t1 v⃗1 + c2σ2t2 v⃗2 + . . .+ cdσ2td v⃗d

Iteration 0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
Iteration 1

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Iteration 2

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Iteration 3

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1
Iteration 4

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1
Iteration 5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1
Iteration 6

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1
Iteration 7

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1
Iteration 8

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration 9

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration 10

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration 11

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration 12

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration 13

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

When will convergence be slow? 10

power method slow convergence

Slow Case: X has singular values: σ1 = 1, σ2 = .99, σ3 = .9, σ4 = .8, . . .

z⃗(0) = c1v⃗1 + c2v⃗2 + . . .+ cdv⃗d =⇒ z⃗(t) = c1σ2t1 v⃗1 + c2σ2t2 v⃗2 + . . .+ cdσ2td v⃗d

Iteration 0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Iteration 1

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Iteration 2

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 3

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 4

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 6

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 7

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 8

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 9

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 10

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 11

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 12

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Iteration 13

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

11

power method convergence rate

z⃗(0) = c1v⃗1 + c2v⃗2 + . . .+ cdv⃗d =⇒ z⃗(t) = c1σ2t1 v⃗1 + c2σ2t2 v⃗2 + . . .+ cdσ2td v⃗d
Write σ2 = (1− γ)σ1 for ‘gap’ γ = σ1−σ2

σ1
. How many iterations t does it

take to have σ2t2 ≤ 1
2 · σ

2t
1 ? O(1/γ).

How many iterations t does it take to have σ2t2 ≤ δ · σ2t1 ? O
(
log(1/δ)

γ

)
.

How small must we set δ to ensure that c1σ2t1 dominates all other
components and so z⃗(t) is very close to v⃗1?

X ∈ Rn×d : matrix with SVD X = UΣVT . Singular values σ1, σ2, . . . , σd . v⃗1 : top
right singular vector, being computed, z⃗(i) : iterate at step i, converging to v⃗1 .

12

random initialization

Claim: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1v1 + c2v2 + . . .+ cdvd, with very high probability, for all i:

O(1/d2) ≤ |ci| ≤ O(logd)

Corollary:

max
j

∣∣∣∣ cjc1
∣∣∣∣ ≤ O(d2 logd).

X ∈ Rn×d : matrix with SVD X = UΣVT . Singular values σ1, σ2, . . . , σd . v⃗1 : top
right singular vector, being computed, z⃗(i) : iterate at step i, converging to v⃗1 .

13

random initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1v1 + c2v2 + . . .+ cdvd, with very high probability,
maxj

cj
c1 ≤ O(d2 logd).

Claim 2: For gap γ = σ1−σ2
σ1

, after t = O
(
log(1/δ)

γ

)
iterations:

z⃗(t) = c1σ2t1 v⃗1 + c2σ2t2 v⃗2 + . . .+ cdσ2td v⃗d ∝ c1v⃗1 + c2δv⃗2 + . . .+ cdδv⃗d

If we set δ = O
(

ϵ
d3 log d

)
by Claim 1 will have:

z⃗(t) ∝ v⃗1 +
ϵ

d
(⃗
v2 + . . .+ v⃗d

)
.

Gives ∥⃗z(t) − v⃗1∥2 ≤ O(ϵ).

X ∈ Rn×d : matrix with SVD X = UΣVT . Singular values σ1, σ2, . . . , σd . v⃗1 : top
right singular vector, being computed, z⃗(i) : iterate at step i, converging to v⃗1 .

14

power method theorem

Theorem (Basic Power Method Convergence)

Let γ = σ1−σ2
σ1

be the relative gap between the first and second largest
singular values. If Power Method is initialized with a random
Gaussian vector v⃗(0) then, with high probability, after t = O

(
log d/ϵ

γ

)
steps:

∥⃗z(t) − v⃗1∥2 ≤ ϵ.

Total runtime: O(t) matrix-vector multiplications.

O
(
nnz(X) · log(d/ϵ)

γ
·
)

= O
(
nd · log(d/ϵ)

γ

)
.

How is ϵ dependence?

How is γ dependence?
15

krylov subspace methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need
t = O

(
log d/ϵ√

γ

)
steps for the same guarantee.

Main Idea: Need to separate σ1 from σi for i ≥ 2.

• Power method: power up to σ2·t1 and σ2·ti .
• Krylov methods: apply a better degree t polynomial Tt(σ21)
and Tt(σ2i).

• Still requires just 2t matrix vector multiplies. Why?

16

krylov subspace methods

vs.

Optimal ‘jump’ polynomial in general is given by a degree t
Chebyshev polynomial. Krylov methods find a polynomial
tuned to the input matrix that does at least as well.

17

generalizations to larger k

• Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

• Block Krylov methods

Runtime: O
(
ndk · log d/ϵ√

γ

)
to accurately compute the top k singular vectors.

‘Gapless’ Runtime: O
(
ndk · log d/ϵ√

ϵ

)
if you just want a set of vectors that gives an ϵ-optimal
low-rank approximation when you project onto them.

18

connection to random walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at
random from the neighbors of the current vertex.

19

connection to random walks

Let p⃗(t) ∈ Rn have ith entry p⃗(t)i = Pr(walk at node i at step t).

• Initialize: p⃗(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= z⃗Tp⃗(t−1)

where z⃗(j) = 1
degree(j) for all j ∈ neigh(i), z⃗(j) = 0 for all j /∈ neigh(i).

• z⃗ is the ith row of the right normalized adjacency matrix AD−1.

• p⃗(t) = AD−1p⃗(t−1) = AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

p⃗(0)

20

random walking as power method

Claim: After t steps, the probability that a random walk is at node i is
given by the ith entry of

p⃗(t) = AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

p⃗(0).

D−1/2p⃗(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2p⃗(0)).

• D−1/2p⃗(t) is exactly what would obtained by applying t/2 iterations
of power method to D−1/2p⃗(0)!

• Will converge to the top singular vector (eigenvector) of the
normalized adjacency matrix D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to converge
to its stationary distribution (mixing time) is dependent on the
gap between the top two eigenvalues of AD−1. The spectral gap.

21

