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LOGISTICS

- Problem Set 2 was released this weekend. Due Monday 4/13.
- See Piazza (and email from college) for clarification on P/F
policy.



SUMMARY

Last Few Classes: Low-Rank Approximation and PCA
- Compress data that lies close to a k-dimensional subspace.

- Equivalent to finding a low-rank approximation of the data matrix
X: X &~ XW' for orthonormal V e RI*%,

- Optimal solution via PCA (eigendecomposition of X"X or
equivalently, SVD of X).

* Singular vectors of X are the eigenvectors of XX and X"X. Singular
values squared are the eigenvalues.
This Class: Applications of low-rank approx. beyond compression.
- Matrix completion and collaborative filtering
- Entity embeddings (word embeddings, node embeddings, etc.)
- Low-rank approximation for non-linear dimensionality reduction.

- Spectral graph theory, spectral clustering.



MATRIX COMPLETION

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.
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Solve: Y = argmin Z X — Bj,fe]2
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Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) unobserved entries.



ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into
d’ dimensions. But what about when you want to embed
objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Usual Approach: Convert each item into a high-dimensional
feature vector and then apply low-rank approximation.



EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
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- If the error ||X — YZT||¢ is small, then on average,
Xi,a ~ (YZT)i,a = <)7fvza>-

- le., (Vi,Zy) ~ 1 when doc; contains word,.

- If doc; and doc; both contain wordy, (Vi,Za) =~ (Jj,Za) ~ 1.



EXAMPLE: LATENT SEMANTIC ANALYSIS

If doc; and doc; both contain wordy, (Vi,Za) ~ (¥, Za) =~ 1

Zq

Yj
Vi
doc_j
doc i

Another View: Each column of Y represents a ‘topic’ y;(j) indicates
how much doc; belongs to topic j. Z,(j) indicates how much word,
associates with that topic.



EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD Term Documen
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- Just like with documents, Z, and Z, will tend to have high dot
product if word, and word, appear in many of the same
documents.

- In an SVD decomposition we set Z = X,V}.

- The columns of V,, are equivalently: the top k eigenvectors of X'X.
The eigendecomposition of X'X is X'X = VE?V'.

- What is the best rank-k approximation of X'X? l.e.
argmmrankfk B ”XTX - B”F

- XX =V, x3V] =27,



EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of X'X: where (X"X)q 5 is
the number of documents that both word, and word, appear in.

- Think about XX as a similarity matrix (gram matrix, kernel matrix)
with entry (a, b) being the similarity between word, and word,,.

* Many ways to measure similarity: number of sentences both occur
in, number of times both appear in the same window of w words,
in similar positions of documents in different languages, etc.

- Replacing X'X with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastText, etc.



EXAMPLE: WORD EMBEDDING

woman
irl
n g slower

ma
\\ father slow
2 king e slowest

faster

dog \ mother
\ cats daughter fast
dogs France
England longer
/ / he /" fastest
Paris Italy \ long
Londor/

himself
longest
herself &
Rome

Note: word2vec is typically described as a neural-network
method, but it is really just low-rank approximation of a
specific similarity matrix. Neural word embedding as implicit
matrix factorization, Levy and Goldberg.



SIMILARITY VIA GRAPHS

A common way of encoding similarity is via a graph. Eg, a
k-nearest neighbor graph.

- Connect items to similar items, possibly with higher weight
edges when they are more similar.



LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points xq,...,x, into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A € R™" with A;; = edge weight between nodes i and j

X, A
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In LSA example, when X is the term-document matrix, X'X is like an
adjacency matrix, where word, and word,, are connected if they
appear in at least 1 document together (edge weight is # documents
they appear in together).



NORMALIZED ADJACENCY MATRIX
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What is the sum of entries in the it column of A? The
(weighted) degree of vertex i.

Often, A is normalized as A = D~"/2AD~"/2 where D is the
degree matrix.

Spectral graph theory is the field of representing graphs as
matrices and anplvine linear alesebraic techniaues.
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ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of A?

- Project onto the top k eigenvectors of ATA = A%. These are
just the eigenvectors of A.
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ADJACENCY MATRIX EIGENVECTORS

orthonormal diagonal orthonormal
A
112 v - vl
Vi 4, k5t
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- Similar vertices (close with regards to graph proximity)
should have similar embeddings. I.e., Vi(i) should be similar

to Vi())-

15



SPECTRAL EMBEDDING

16



