COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Spring 2020. Lecture 17

LOGISTICS

- · Problem Set 2 was released this weekend. Due Monday 4/13.
- See Piazza (and email from college) for clarification on P/F policy.

Last Few Classes: Low-Rank Approximation and PCA

- · Compress data that lies close to a *k*-dimensional subspace.
- Equivalent to finding a low-rank approximation of the data matrix $\mathbf{X}: \mathbf{X} \approx \mathbf{X}\mathbf{V}\mathbf{V}^\mathsf{T}$ for orthonormal $\mathbf{V} \in \mathbb{R}^{d \times k}$.
- Optimal solution via PCA (eigendecomposition of X^TX or equivalently, SVD of X).
- Singular vectors of **X** are the eigenvectors of **XX**^T and **X**^T**X**. Singular values squared are the eigenvalues.

This Class: Applications of low-rank approx. beyond compression.

- · Matrix completion and collaborative filtering
- Entity embeddings (word embeddings, node embeddings, etc.)
- · Low-rank approximation for non-linear dimensionality reduction.
- · Spectral graph theory, spectral clustering.

MATRIX COMPLETION

Consider a matrix $X \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

X		Movies								Υ	Movies								
Users	5			1	4					Users	4.9	3.1	3	1.1	3.8	4.1	4.1	3.4	4.6
		3					5				3.6	3	3	1.2	3.8	4.2	5	3.4	4.8
											2.8	3	3	2.3	3	3	3	3	3.2
					4						3.4	3	3	4	4.1	4.1	4.2	3	3
											2.8	3	3	2.3	3	3	3	3	3.4
		5							5		2.2	5	3	4	4.2	3.9	4.4	4	5.3
	1			2							1	3.3	3	2.2	3.1	2.9	3.2	1.5	1.8

Solve:
$$Y = \underset{\text{rank} - k}{\text{arg min}} \sum_{\text{observed } (j,k)} [X_{j,k} - B_{j,k}]^2$$

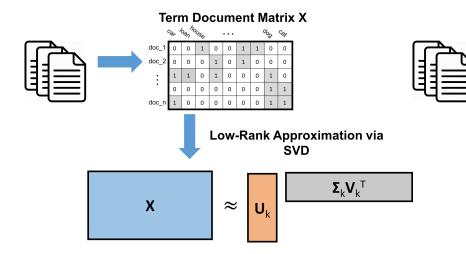
Under certain assumptions, can show that **Y** well approximates **X** on both the observed and (most importantly) unobserved entries.

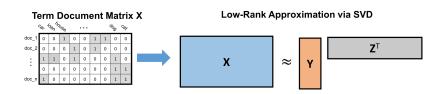
ENTITY EMBEDDINGS

Dimensionality reduction embeds *d*-dimensional vectors into *d'* dimensions. But what about when you want to embed objects other than vectors?

- · Documents (for topic-based search and classification)
- · Words (to identify synonyms, translations, etc.)
- · Nodes in a social network

Usual Approach: Convert each item into a high-dimensional feature vector and then apply low-rank approximation.



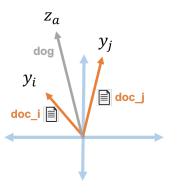


• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

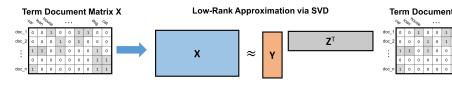
$$X_{i,a} \approx (YZ^T)_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

- I.e., $\langle \vec{y}_i, \vec{z}_a \rangle \approx 1$ when doc_i contains $word_a$.
- If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$.

If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$



Another View: Each column of Y represents a 'topic'. $\vec{y_i}(j)$ indicates how much doc_i belongs to topic j. $\vec{z_a}(j)$ indicates how much $word_a$ associates with that topic.



- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- · In an SVD decomposition we set $\mathbf{Z} = \mathbf{\Sigma}_k \mathbf{V}_k^{\mathsf{T}}$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX . The eigendecomposition of X^TX is $X^TX = V\Sigma^2V^T$.
- What is the best rank-k approximation of X^TX ? I.e. arg $\min_{rank = k} \|X^TX B\|_F$
- $\mathbf{V}^{\mathsf{T}}\mathbf{X} = \mathbf{V}_{k}\mathbf{\Sigma}_{k}^{2}\mathbf{V}_{k}^{\mathsf{T}} = \mathbf{Z}\mathbf{Z}^{\mathsf{T}}.$

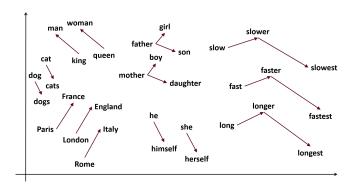
EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into *k*-dimensional space.

• Embedding is via low-rank approximation of X^TX : where $(X^TX)_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.

- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.
- Replacing X^TX with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastText, etc.

EXAMPLE: WORD EMBEDDING

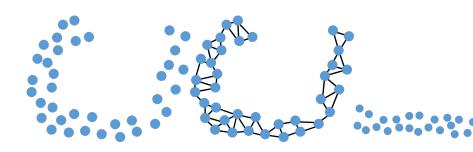


Note: word2vec is typically described as a neural-network method, but it is really just low-rank approximation of a specific similarity matrix. *Neural word embedding as implicit matrix factorization*, Levy and Goldberg.

SIMILARITY VIA GRAPHS

A common way of encoding similarity is via a graph. E.g., a *k*-nearest neighbor graph.

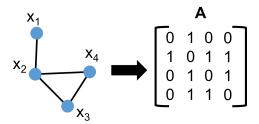
· Connect items to similar items, possibly with higher weight edges when they are more similar.



LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

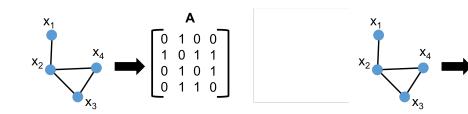
Once we have connected n data points x_1, \ldots, x_n into a graph, we can represent that graph by its (weighted) adjacency matrix.

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i,j} = \text{ edge weight between nodes } i \text{ and } j$



In LSA example, when \mathbf{X} is the term-document matrix, $\mathbf{X}^T\mathbf{X}$ is like an adjacency matrix, where $word_a$ and $word_b$ are connected if they appear in at least 1 document together (edge weight is # documents they appear in together).

NORMALIZED ADJACENCY MATRIX



What is the sum of entries in the i^{th} column of A? The (weighted) degree of vertex i.

Often, **A** is normalized as $\bar{\mathbf{A}} = \mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}$ where **D** is the degree matrix.

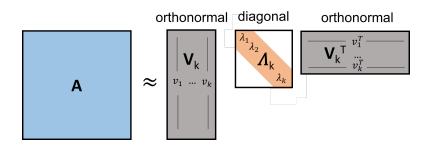
Spectral graph theory is the field of representing graphs as matrices and applying linear algebraic techniques.

ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of A?

• Project onto the top k eigenvectors of $\mathbf{A}^T \mathbf{A} = \mathbf{A}^2$. These are just the eigenvectors of \mathbf{A} .

ADJACENCY MATRIX EIGENVECTORS



· Similar vertices (close with regards to graph proximity) should have similar embeddings. I.e., $V_k(i)$ should be similar to $V_k(j)$.

SPECTRAL EMBEDDING

