COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Spring 2020. Lecture 16

Last Class: Low-Rank Approximation, Eigendecomposition, and PCA

- Can approximate data lying close to in a *k*-dimensional subspace by projecting data points into that space.
- Finding the best *k*-dimensional subspace via eigendecomposition (PCA).
- Measuring error in terms of the eigenvalue spectrum.

This Class: Finish Low-Rank Approximation and Connection to the singular value decomposition (SVD)

- Finish up PCA runtime considerations and picking *k*.
- \cdot View of optimal low-rank approximation using the SVD.
- Applications of low-rank approximation beyond compression.

BASIC SET UP

Set Up: Assume that data points $\vec{x_1}, \dots, \vec{x_n}$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{W}^{\mathsf{T}} \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .
- * $X \approx X(VV^{\text{T}}).$ Gives the closest approximation to X with rows in $\mathcal{V}.$

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace $\mathcal{Y}, \mathbf{Y} \in \mathbb{R}^{d \times k}$. matrix with columns \vec{v}_k .

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \|\mathbf{X}\mathbf{V}\|_{F}^{2} = \sum_{j=1}^{k} \|\mathbf{X}\vec{v}_{j}\|_{2}^{2}$$

Solution via eigendecomposition: Letting V_k have columns $\vec{v}_1, \ldots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix $X^T X$,

$$\mathbf{V}_{k} = \operatorname*{arg\,max}_{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}} \|\mathbf{X}\mathbf{V}\|_{F}^{2}$$

- Proof via Courant-Fischer and greedy maximization.
- Approximation error is $\|\mathbf{X}\|_F^2 \|\mathbf{X}\mathbf{V}_k\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^T\mathbf{X}).$

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

Plotting the spectrum of the covariance matrix $\mathbf{X}^T \mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_1, \ldots, \vec{x}_n$ are to a low-dimensional subspace).

- Choose *k* to balance accuracy and compression.
- Often at an 'elbow'.

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: top

Exercise: Show that the eigenvalues of $\mathbf{X}^T \mathbf{X}$ are always positive. **Hint:** Use that $\lambda_j = \vec{v}_j^T \mathbf{X}^T \mathbf{X} \vec{v}_j$. **Recall:** Low-rank approximation is possible when our data features are correlated.

10000 Datalounist 10 (sq. rc.) ~ ist price									
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price			
home 1	2	2	1800	2	200,000	195,000			
home 2	4	2.5	2700	1	300,000	310,000			
•		-							
•	·	·	•	•	•	•			
•	•	•	•	•	•	•			
home n	5	3.5	3600	3	450,000	450,000			

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of $X^T X$.

What is the covariance of C? $C^T C = V_k^T X^T X V_k = V_k^T V \Lambda V^T V_k = \Lambda_k$

Covariance becomes diagonal. I.e., all correlations have been removed. Maximal compression.

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

What is the runtime to compute an optimal low-rank approximation?

- Computing the covariance matrix $X^T X$ requires $O(nd^2)$ time.
- Computing its full eigendecomposition to obtain $\vec{v}_1, \ldots, \vec{v}_k$ requires $O(d^3)$ time (similar to the inverse $(\mathbf{X}^T \mathbf{X})^{-1}$).

Many faster iterative and randomized methods. Runtime is roughly $\tilde{O}(ndk)$ to output just to top k eigenvectors $\vec{v}_1, \ldots, \vec{v}_k$.

 \cdot Will see in a few classes (power method, Krylov methods).

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T \mathbf{X}, \mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with rank $(\mathbf{X}) = r$ can be written as $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$.

- **U** has orthonormal columns $\vec{u}_1, \ldots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- V has orthonormal columns $\vec{v}_1, \ldots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r > 0$ (singular values).

The 'swiss army knife' of modern linear algebra.

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$:

 $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\mathbf{\Sigma}^{2}\mathbf{V}^{\mathsf{T}}$ (the eigendecomposition)

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The left and right singular vectors are the eigenvectors of the covariance matrix $X^T X$ and the gram matrix XX^T respectively.

So, letting $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \ldots, \vec{v}_k$, we know that $\mathbf{XV}_k \mathbf{V}_k^{\mathsf{T}}$ is the best rank-*k* approximation to **X** (given by PCA).

What about $\mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \dots, \vec{u}_k$? Gives exactly the same approximation!

 $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \ldots$ (right singular vectors), $\mathbf{\Sigma} \in \mathbb{R}^{\operatorname{rank}(\mathbf{X}) \times \operatorname{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of \mathbf{X} .

The best low-rank approximation to X:

$$\mathbf{X}_k = \arg\min_{\operatorname{rank} - k} \mathop{\mathbf{B} \in \mathbb{R}^{n \times d}}_{\mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$$
 is given by:
 $\mathbf{X}_k = \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T = \mathbf{U}_k\mathbf{U}_k^T\mathbf{X} = \mathbf{U}_k\mathbf{\Sigma}_k\mathbf{V}_k^T$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k

Row (data point) compression

Column (feature) compression

10000* bathrooms+ 10* (sq. ft.) ≈ list price									
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price			
home 1	2	2	1800	2	200,000	195,000			
home 2	4	2.5	2700	1	300,000	310,000			
	•		•	•	•	•			
•	•	•	•	·	•	•			
•	•	•	•	•	•	•			
home n	5	3.5	3600	3	450,000	450,000			

THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to **X**: $\mathbf{X}_k = \arg \min_{\operatorname{rank} - k} \mathop{\mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$ is given by:

$$\mathbf{X}_{k} = \mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathsf{T}} = \mathbf{U}_{k}\mathbf{U}_{k}^{\mathsf{T}}\mathbf{X} = \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{\mathsf{T}}$$

 $X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \ldots$ (right singular vectors), $\Sigma \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

 $X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \ldots$ (right singular vectors), $\Sigma \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

Rest of Class: Examples of how low-rank approximation is applied in a variety of data science applications.

• Used for many reasons other than dimensionality reduction/data compression.

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-*k* (i.e., well approximated by a rank *k* matrix). Classic example: the Netflix prize problem.

Under certain assumptions, can show that **Y** well approximates **X** on both the observed and (most importantly) unobserved entries.

Dimensionality reduction embeds *d*-dimensional vectors into *d'* dimensions. But what about when you want to embed objects other than vectors?

- · Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- \cdot Nodes in a social network

Usual Approach: Convert each item into a high-dimensional feature vector and then apply low-rank approximation.

EXAMPLE: LATENT SEMANTIC ANALYSIS

• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^{T}\|_{F}$ is small, then on average,

$$\mathbf{X}_{i,a} \approx (\mathbf{Y}\mathbf{Z}^{\mathsf{T}})_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

- I.e., $\langle \vec{y}_i, \vec{z}_a \rangle \approx 1$ when doc_i contains $word_a$.
- If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle = 1$.

EXAMPLE: LATENT SEMANTIC ANALYSIS

If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle = 1$

Another View: Each column of Y represents a 'topic'. $\vec{y_i}(j)$ indicates how much doc_i belongs to topic *j*. $\vec{z_a}(j)$ indicates how much word_a associates with that topic.

- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if *word*_i and *word*_j appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z} = \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}$.
- The columns of V_k are equivalently: the top k eigenvectors of $X^T X$. The eigendecomposition of $X^T X$ is $X^T X = V \Sigma^2 V^T$.
- What is the best rank-*k* approximation of $X^T X$? I.e. arg min_{rank *k* B $||X^T X B||_F$}
- $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}_{k}\mathbf{\Sigma}_{k}^{2}\mathbf{V}_{k}^{\mathsf{T}} = \mathbf{Z}\mathbf{Z}^{\mathsf{T}}.$

LSA gives a way of embedding words into *k*-dimensional space.

• Embedding is via low-rank approximation of $\mathbf{X}^T \mathbf{X}$: where $(\mathbf{X}^T \mathbf{X})_{a,b}$ is the number of documents that both *word*_a and *word*_b appear in.

- Think about $X^T X$ as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word_a and word_b.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of *w* words, in similar positions of documents in different languages, etc.
- Replacing X^TX with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastTest, etc.

EXAMPLE: WORD EMBEDDING

Note: word2vec is typically described as a neural-network method, but it is really just low-rank approximation of a specific similarity matrix. *Neural word embedding as implicit matrix factorization*, Levy and Goldberg.

Summary:

- Can use the SVD to understand optimal low-rank approximation in terms of the dual row/column projection view: XV_kV^T_k = U_kU^T_kX = U_kΣ_kV^T_k.
- A generalization of eigendecomposition: singular vectors are eigenvectors of **XX**^T and **X**^T**X**.
- Applications to low-rank approximation to matrix completion and entity embeddings.

Next Time: Low-rank representations of graphs and networks. Beginning of spectral graph theory.