COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Spring 2020.
Lecture 15

SUMMARY

Last Class: Low-Rank Approximation

- When data lies in a k-dimensional subspace \mathcal{V}, we can perfectly embed into k dimensions using an orthonormal span $\mathrm{V} \in \mathbb{R}^{d \times k}$.
- When data lies close to \mathcal{V}, the optimal embedding in that space is given by projecting onto that space.

$$
\mathbf{X V V}^{\top}=\underset{\mathrm{B} \text { with rows in } \mathcal{V}}{\arg \min }\|\mathbf{X}-\mathbf{B}\|_{F}^{2} .
$$

This Class: Finding \mathcal{V} via eigendecomposition.

- How do we find the best low-dimensional subspace to approximate \mathbf{X} ?
- PCA and its connection to eigendecomposition.

BASIC SET UP

Set Up: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}. Let $\mathrm{X} \in \mathbb{R}^{n \times d}$ be the data matrix.
d-dimensional space

d-dimensional space

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{V V}^{\top} \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V}.
- $\mathrm{X} \approx \mathrm{X}\left(\mathrm{VV}^{\top}\right)$. Gives the closest approximation to X with rows in \mathcal{V}.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

DIMENSIONALITY REDUCTION AND LOW-RANK APPROXIMATION

Low-Rank Approximation: Approximate $\mathrm{X} \approx \mathrm{XVV}^{\top}$.

- XVV^{\top} is a rank-k matrix - all its rows fall in \mathcal{V}.
- X's rows are approximately spanned by the columns of V .
- X's columns are approximately spanned by the columns of XV.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

DUAL VIEW OF LOW-RANK APPROXIMATION

projections onto 15
784 dimensional vectors

Column (feature) compression

Row (data point) compression

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
-	-	-	-	-	-	-
-	-	-	-	-	-	
-	-	-	-	-	-	-
home n	5	3.5	3600	3	450,000	450,000

BEST FIT SUBSPACE

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as XVV^{\top}. XV gives optimal embedding of X in \mathcal{V}.

How do we find \mathcal{V} (equivilantly V)?

$\underset{\text { orthonormal } \mathbf{v} \in \mathbb{R}^{d \times k}}{\operatorname{argmin}}\left\|\mathbf{X}-\mathbf{X V V}^{\top}\right\|_{F}^{2}=\sum_{i, j}\left(\mathrm{X}_{i, j}-\left(\mathrm{XVV}^{\top}\right)_{i, j}\right)^{2}=\sum_{i=1}^{n}\left\|\overrightarrow{\mathrm{x}}_{i}-\mathrm{VV}^{\top} \vec{x}_{i}\right\|_{2}^{2}$
d-dimensional space

Projection only reduces data point lengths and distances. Want to minimize this reduction. How does this compare to JL random

BEST FIT SUBSPACE

V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:
$\underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max }\left\|\mathrm{XVV}^{\top}\right\|_{F}^{2}=\sum_{i=1}^{n}\left\|\mathrm{VV}^{\top} \vec{x}_{i}\right\|_{2}^{2} \underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max }\|\mathrm{XV}\|_{F}^{2}=\sum_{i=1}^{n}\left\|\mathrm{~V}^{\top} \vec{x}_{i}\right\|_{2}^{2}=$
Columns of V are 'directions of greatest variance' in the data.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogo-
nal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SOLUTION VIA EIGENDECOMPOSITION

V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
\|\mathbf{X V}\|_{F}^{2}=\sum_{i=1}^{n}\left\|\mathbf{V}^{\top} \vec{x}_{i}\right\|_{2}^{2}=\sum_{j=1}^{k} \sum_{i=1}^{n}\left\langle\vec{v}_{j}, \vec{x}_{i}\right\rangle^{2}=\sum_{j=1}^{k}\left\|X \vec{V}_{j}\right\|_{2}^{2}
$$

Surprisingly, can find the columns of $\mathrm{V}, \overrightarrow{\mathrm{v}}_{1}, \ldots, \vec{v}_{k}$ greedily.

$$
\vec{v}_{1}=\underset{\vec{v} \text { with }\|v\|_{2}=1}{\arg \max }\|X \vec{V}\|_{2}^{2} \vec{v}^{\top} \mathbf{X}^{\top} X \vec{v} .
$$

$$
\vec{v}_{2}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\left\langle\vec{v}, \vec{v}_{1}\right\rangle=0\right.}{\arg \max } \vec{v}^{\top} \mathbf{X}^{\top} X \vec{V} .
$$

$$
\vec{V}_{k}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{V}, \vec{v}_{j}\right\rangle=0}{\arg \max } \vec{v}^{\top} \mathbf{X}^{\top} \mathbf{X} \vec{v} .
$$

These are exactly the top k eigenvectors of $X^{\top} X$.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: $\vec{x} \in \mathbb{R}^{d}$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if
$A \vec{x}=\lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

- That is, A just 'stretches' x.
- If A is symmetric, can find d orthonormal eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{d}$. Let $\mathrm{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

$$
\mathbf{A V}=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\mathbf{A} \vec{v}_{1} & \mathbf{A} \vec{v}_{2} & \cdots & \mathbf{A} \vec{v}_{d} \\
\mid & \mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\lambda_{1} \vec{v}_{1} & \lambda_{2} \vec{v}_{2} & \cdots & \lambda \vec{v}_{d} \\
\mid & \mid & \mid & \mid
\end{array}\right]=\mathrm{V} \boldsymbol{\Lambda}
$$

Yields eigendecomposition: $\mathrm{AVV}^{\top}=\mathrm{A}=\mathrm{V} \wedge \mathrm{V}^{\top}$.

REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Typically order the eigenvectors in decreasing order:
$\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{d}$.

COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are given via the greedy optimization:

$$
\begin{aligned}
& \vec{v}_{1}=\underset{\vec{v} \text { with }}{\|v\|_{2}=1} \arg \max \vec{v}^{\top} \vec{v} . \\
& \vec{v}_{2}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \overrightarrow{v_{1}}\right\rangle=0}{\arg \max } \vec{v}^{\top} A \vec{v} . \\
& \vec{v}_{d}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \vec{v}_{j}\right\rangle=0}{\arg \max } \vec{v}^{\top} \mathbf{A} \vec{v} .
\end{aligned}
$$

- $\vec{v}_{j}^{\top} A \vec{v}_{j}=\lambda_{j} \cdot \vec{v}_{j}^{\top} \vec{v}_{j}=\lambda_{j}$, the $j^{\text {th }}$ largest eigenvalue.
- The first k eigenvectors of $X^{\top} \mathbf{X}$ (corresponding to the largest k eigenvalues) are exactly the directions of greatest variance in X that we use for low-rank approximation.

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting V_{k} have columns $\overrightarrow{\mathrm{V}}_{1}, \ldots, \vec{V}_{k}$ corresponding to the top k eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}, \mathrm{V}_{k}$ is the orthogonal basis minimizing

$$
\left\|\mathrm{X}-\mathrm{XV} \mathrm{~V}_{k} \mathrm{~V}_{k}^{\top}\right\|_{F}^{2}
$$

This is principal component analysis (PCA).
How accurate is this low-rank approximation? Can understand using eigenvalues of $\mathbf{X}^{\top} \mathbf{X}$.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SPECTRUM ANALYSIS

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $X^{\top} X$ (the top k principal components). Approximation error is:

$$
\begin{aligned}
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\top}\right\|_{F}^{2} & =\|\mathbf{X}\|_{F}^{2} \operatorname{tr}\left(\mathbf{X}^{\top} \mathbf{X}\right)-\left\|\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\top}\right\|_{F}^{2} \operatorname{tr}\left(\mathbf{V}_{k}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{V}_{k}\right) \\
& =\sum_{i=1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)-\sum_{i=1}^{k} \overrightarrow{\mathrm{~V}}_{i}^{\top} \mathbf{X}^{\top} \mathbf{X} \vec{V}_{i} \\
& =\sum_{i=1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)-\sum_{i=1}^{k} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)=\sum_{i=k+1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)
\end{aligned}
$$

- For any matrix $\mathrm{A},\|\mathrm{A}\|_{F}^{2}=\sum_{i=1}^{d}\left\|\vec{a}_{i}\right\|_{2}^{2}=\operatorname{tr}\left(\mathrm{A}^{\top} \mathrm{A}\right)$ (sum of diagonal entries = sum eigenvalues).
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of $X^{\top} X$ is:

$$
\left\|\mathbf{X}-\mathbf{X V}_{k} \mathbf{V}_{k}^{\top}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)
$$

$d x d$

error of optimal low rank approximation

784 dimensional vec

eige
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ (its eigenvalues) shows how compressible X is using low-rank approximation (i.e., how close $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are to a low-dimensional subspace).

784 dimensional vectors

784 dimensional vectors

eigendec
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{\top} \mathbf{X}, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SPECTRUM ANALYSIS

784 dimensional vectors

Exercise: Show that the eigenvalues of $X^{\top} X$ are always positive. Hint: Use that $\lambda_{j}=\vec{v}_{j}^{\top} X^{\top} X \vec{v}_{j}$.

SUMMARY

- Many (most) datasets can be approximated via projection onto a low-dimensional subspace.
- Find this subspace via a maximization problem:
$\max _{\text {honormal }}\|\mathrm{XV}\|_{F}^{2}$.
- Greedy solution via eigendecomposition of $X^{\top} X$.
- Columns of V are the top eigenvectors of $X^{\top} X$.
- Error of best low-rank approximation is determined by the tail of $X^{\top} X^{\prime}$ s eigenvalue spectrum.

INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features are correlated.

Our compressed dataset is $\mathbf{C}=\mathrm{XV}_{k}$ where the columns of V_{k} are the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$.

What is the covariance of \mathbf{C} ? $\mathbf{C}^{\top} \mathbf{C}=\mathbf{V}_{k}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{V}_{k}=\mathbf{V}_{k}^{\top} \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\top} \mathbf{V}_{k}=\boldsymbol{\Lambda}_{k}$
Covariance becomes diagonal. I.e., all correlations have been removed. Maximal compression.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

ALGORITHMIC CONSIDERATIONS

What is the runtime to compute an optimal low-rank approximation?

- Computing the covariance matrix $X^{\top} X$ requires $O\left(n d^{2}\right)$ time.
- Computing its full eigendecomposition to obtain $\vec{v}_{1}, \ldots, \vec{v}_{k}$ requires $O\left(d^{3}\right)$ time (similar to the inverse $\left.\left(X^{\top} X\right)^{-1}\right)$.

Many faster iterative and randomized methods. Runtime is roughly $\tilde{O}(n d k)$ to output just to top k eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

- Will see in a few classes

```
\vec{x}
eigenvectors of }\mp@subsup{X}{}{\top}X,\mp@subsup{V}{k}{}\in\mp@subsup{\mathbb{R}}{}{d\timesk}\mathrm{ : matrix with columns }\mp@subsup{\vec{v}}{1}{\prime},\ldots,\mp@subsup{\vec{v}}{k}{}
```

