COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Spring 2020.
Lecture 14

LOGISTICS

Move Online:

- Check out Piazza post for details about moving online.
- Lectures will be streamed and recorded. Feel free to ask questions using audio or by typing into chat. Mute when not talking.
- Feel free to turn on video, although it will be automatically off at the beginning of each lecture.
- Office hours will be over Zoom, after class on Tuesdays. Different Zoom link.
- Message me if you want to attend office hours but can't.
- Problem set rules will remain the same: you can submit in groups of up to three, but do not have to.

LOGISTICS

Midterm:

- Midterm grades are posted in Moodle. Average was a 30/37.
- Email me if you'd like to see your graded midterm.
- I won't release an answer key, but you can ask about midterm solutions in office hours or on Piazza.
- If you were not happy with your performance I'm happy to talk about it, and see if there are any adjustments we can make to get things on track.

LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ lie in some k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

$$
\left\|\mathbf{V}^{\top} \vec{x}_{i}-\mathbf{V}^{\top} \vec{x}_{j}\right\|_{2}^{2}=\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}^{2} .
$$

Letting $\tilde{x}_{i}=\mathbf{V}^{\top} \vec{x}_{i}$, we have a perfect embedding from \mathcal{V} into \mathbb{R}^{k}.

EMBEDDING WITH ASSUMPTIONS

Main Focus of Today: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Letting $\vec{V}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathrm{V}^{\top} \vec{x}_{i} \in \mathbb{R}^{k}$ is still a good embedding for $x_{i} \in \mathbb{R}^{d}$. The key idea behind low-rank approximation and principal component analysis (PCA).

- How do we find \mathcal{V} and V ?
- How good is the embedding?

LOW-RANK FACTORIZATION

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- Letting $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V}, can write any \vec{x}_{i} as:

$$
\vec{x}_{i}=\mathrm{V} \vec{c}_{i}=c_{i, 1} \cdot \vec{v}_{1}+c_{i, 2} \cdot \vec{v}_{2}+\ldots+c_{i, k} \cdot \vec{v}_{k} .
$$

- So $\vec{v}_{1}, \ldots, \vec{v}_{k}$ span the rows of \mathbf{X} and thus $\operatorname{rank}(X) \leq k$.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- Every data point \vec{X}_{i} (row of \boldsymbol{X}) can be written as

$$
\vec{x}_{i}=\mathrm{V} \vec{c}_{i}=c_{i, 1} \cdot \vec{v}_{1}+\ldots+c_{i, k} \cdot \vec{v}_{k} .
$$

- X can be represented by $(n+d) \cdot k$ parameters vs. $n \cdot d$.
- The rows of X are spanned by k vectors: the columns of $V \Longrightarrow$ the columns of X are spanned by k vectors: the columns of C.
$\vec{x}_{1}, \ldots, \vec{x}_{n}$: data points (in \mathbb{R}^{d}), $\mathcal{V}: k$-dimensional subspace of $\mathbb{R}^{d}, \vec{v}_{1}, \ldots, \vec{v}_{k} \in$ \mathbb{R}^{d} : orthogonal basis for $\mathcal{V} . \mathbb{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

LOW-RANK FACTORIZATION

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathrm{X}=\mathrm{CV}^{\top}$.

Exercise: What is this coefficient matrix \mathbf{C} ? Hint: Use that $\mathrm{V}^{\top} \mathbf{V}=\mathbf{I}$.

- $\mathrm{X}=\mathrm{CV}^{\top} \Longrightarrow \mathrm{XV}=\mathrm{CV}^{\top} \mathrm{V}$
- $\mathrm{V}^{\top} \mathrm{V}=\mathrm{I}$, the identity (since V is orthonormal) $\Longrightarrow \mathrm{XV}=\mathrm{C}$.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogo-
nal basis for subspace $\mathcal{V} . \mathrm{V} \in \mathbb{R}^{d \times k}$. matrix with columns $\overrightarrow{\mathrm{v}}_{1}$. \vec{v}_{b}.

PROJECTION VIEW

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
X=C V^{\top} X V V^{\top} .
$$

- VV^{\top} is a projection matrix, which projects the rows of X (the data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ onto the subspace \mathcal{V}.

LOW-RANK APPROXIMATION

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
X \approx X V V^{\top}
$$

Note: $\mathbf{X V V}^{\top}$ has rank k. It is a Low-rank approximation of \mathbf{X}.

$$
\mathrm{XVV}^{\top}=\underset{\mathrm{B} \text { with rows in } \mathcal{V}}{\arg \min }\|\mathrm{X}-\mathrm{B}\|_{F}^{2}=\sum_{i, j}\left(\mathrm{X}_{i, j}-\mathrm{B}_{i, j}\right)^{2} .
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{R} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathrm{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

LOW-RANK APPROXIMATION

So Far: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
X \approx X V V^{\top} .
$$

This is the closest approximation to X with rows in \mathcal{V} (i.e., in the column span of V).

- Letting $\left(X V V^{\top}\right)_{i},\left(X V V^{\top}\right)_{j}$ be the $i^{\text {th }}$ and $j^{\text {th }}$ projected data points,

$$
\left\|\left(X V V^{\top}\right)_{i}-\left(X V V^{\top}\right)_{j}\right\|_{2}=\left\|\left[(X V)_{i}-(X V)_{j}\right] V^{\top}\right\|_{2}=\left\|\left[(X V)_{i}-(X V)_{j}\right]\right\|_{2}
$$

- Can use XV $\in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Key question is how to find the subspace \mathcal{V} and correspondingly V .
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

PROPERTIES OF PROJECTION MATRICES

Quick Exercise: Show that VV^{\top} is idempotent. I.e., $\left(\mathrm{VV}^{\top}\right)\left(\mathrm{VV}^{\top}\right) \vec{y}=\left(\mathrm{VV}^{\top}\right) \vec{y}$ for any $\vec{y} \in \mathbb{R}^{d}$.

Why does this make sense intuitively?
Less Quick Exercise: (Pythagorean Theorem) Show that:

$$
\|\vec{y}\|_{2}^{2}=\left\|\left(\mathrm{V}^{\top}\right) \vec{y}\right\|_{2}^{2}+\left\|\vec{y}-\left(\mathrm{V} \mathrm{~V}^{\top}\right) \vec{y}\right\|_{2}^{2} .
$$

A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- The rows of X can be approximately reconstructed from a basis of k vectors.
projections onto 15
784 dimensional vectors
dimensional space orthonormal basis $\mathrm{v}_{1}, \ldots, \mathrm{v}_{15}$

DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors. Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price		bedrooms
home 1	2	2	1800	2	200,000	195,000	home 1	2
home 2	4	2.5	2700	1	300,000	310,000	home 2	4
-	-	-	-	.	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	
home n	5	3.5	3600	3	450,000	450,000	home n	5^{13}

BEST FIT SUBSPACE

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as XVV^{\top}. XV gives optimal embedding of X in \mathcal{V}.

How do we find \mathcal{V} (equivilantly V)?

$\underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \min }\left\|\mathbf{X}-\mathbf{X V V ^ { \top }}\right\|_{F}^{2}=\sum_{i, j}\left(\mathbf{X}_{i, j}-\left(\mathbf{X V V}^{\top}\right)_{i, j}\right)^{2}=\sum_{i=1}^{n}\left\|\vec{x}_{i}-\mathbf{V V}^{\top} \vec{x}_{i}\right\|_{2}^{2} \quad$ arthono
d-dimensional space

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{V}_{1}, \ldots, \vec{v}_{k}$.

BEST FIT SUBSPACE

V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:
$\underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max }\left\|\mathrm{XVV}^{\top}\right\|_{F}^{2}=\sum_{i=1}^{n}\left\|\mathrm{VV}^{\top} \vec{x}_{i}\right\|_{2}^{2} \underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max }\|\mathrm{XV}\|_{F}^{2}=\sum_{i=1}^{n}\left\|\mathrm{~V}^{\top} \vec{x}_{i}\right\|_{2}^{2}=$
Columns of V are 'directions of greatest variance' in the data.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogo-
nal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SUMMARY

- Many datasets lie close to a k-dimensionsal subspace.
- Can take advantage of this to do data-dependent linear dimensionality reduction (low-rank approximation.
- Dual view: both rows (data points) and columns (features) are approximated spanned by a small number of vectors.
- Step 1: Find this subspace by finding the directions of greatest variance in the data.
- Step 2: Get best approximation to the data points in this subspace via projection matrix $\mathrm{VV}^{\top} . \mathrm{V} \in \mathbb{R}^{d \times k}$ used as linear mapping from d-dimensional to k-dimensional space.

