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LOGISTICS

- Midterm is on Thursday.
- No calculators, cheatsheets, or other aids.

- Very important to do some practice problems and to try
them first with no resources, to simulate the exam.

- Make sure you can recognize when to apply the
fundamentals: union bound, linearity of expectation and
variance, Markov's inequality, Chebyshev's inequality,
indicator random variables.

- Understand the goal of each algorithm/data structure. l.e,
what problem it solves with what guarantees. No need to
memorize proofs.






SUMMARY

Last Few Classes:

The Johnson-Lindenstrauss Lemma

- Reduce n data points in any dimension d to O (miig’”

dimensions and preserve (with probability > 1— §) all
pairwise distances up to T=+e.

- Compression is linear via multiplication with a random, data
oblivious, matrix (linear compression)

High-Dimensional Geometry

- Why high-dimensional space is so different than
low-dimensional space.

- How the JL Lemma can still work.



SUMMARY

Next Few Classes: Low-rank approximation, the SVD, and
principal component analysis (PCA).

- Reduce d-dimesional data points to a smaller dimension m.

- Like JL, compression is linear = by applying a matrix.

- Chose this matrix carefully, taking into account structure of
the dataset.

- Can give better compression than random projection.

Will be using a fair amount of linear algebra: orthogonal basis,
column/row span, eigenvectors, etc,



RANDOMIZED ALGORITHMS UNIT TAKEAWAYS

- Randomization is an important tool in working with large datasets.

- Lets us solve ‘easy’ problems that get really difficult on massive
datasets. Fast/space efficient look up (hash tables and bloom
filters), distinct items counting, frequent items counting, near
neighbor search, etc.

- The analysis of randomized algorithms leads to complex output
distributions, which we can't compute exactly.

+ We use concentration inequalities to bound these distributions
and behaviors like accuracy, space usage, and runtime.

- Concentration inequalities and probability tools used in
randomized algorithms are also fundamental in statistics, machine
learning theory, probabilistic modeling of complex systems, etc.



EMBEDDING WITH ASSUMPTIONS

Assume that data points Xi,..., X, lie in any k-dimensional subspace
Y of RY.

d-dimensional space d-dimensional space

k-dim. subspace V k-dim. subspace V

Claim: Let v, ..., V), be an orthonormal basis for vV and V € R9*k pe
the matrix with these vectors as its columns. For all X;, Xj:

IVI%: = VIil2 = (1% = Xill2-
- VI e R**4 is a linear embedding of Xi, ..., X, into k dimensions

with no distortion.

* An actual projection, analogous to a JL random projection M. 6



DOT PRODUCT TRANSFORMATION

Claim: Let V4, ..., V), be an orthonormal basis for V and
V € R9%k be the matrix with these vectors as its columns. For
all )_(i?)_(} eV

VX = VI5ill2 = 11X = Xj]l2.



EMBEDDING WITH ASSUMPTIONS

Main Focus of Today: Assume that data points X, ..., X, lie close to
any k-dimensional subspace V of RY.

d-dimensional space d-dimensional space

k-dim. subspace V k-dim. subspace V

Letting V4, ..., Vi, be an orthonormal basis for V and V € R¥*F be the
matrix with these vectors as its columns, V'X; € R¥ is still a good
embedding for x; € RY. The key idea behind low-rank approximation

and principal component analysis (PCA).
* How do we find V and V?
* How good is the embedding? 8



