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LOGISTICS

- Problem Set 2 is due thus upcoming Sunday 3/8.

- Midterm is next Thursday, 3/12. See webpage for study
guide/practice questions.

- Let me know ASAP if you need accommodations (e.g.,
extended time).

- My office hours next Tuesday will focus on exam review. | will
hold them at the usual time, and before class at 10:15am.

- | 'am rearranging the next two lectures to spend more time
on the JL Lemma and randomized methods, before moving
on the spectral methods (PCA, spectral clustering, etc.)



MIDTERM ASSESSMENT PROCESS

Thanks for you feedback! Some specifics:

- More details in proofs and slower pace. Will try to find a
balance with this.

- Recap at the end of class.

- | will post ‘compressed’ versions of the slides. Not perfect,
but looking into ways to improve.

- After the midterm, | might split the homework assignments
into more smaller assignments to spread out the work more.



SUMMARY

Last Class: The Johnson-Lindenstrauss Lemma

- Low-distortion embeddings for any set of points via random
projection.

- Started on proof of the JL Lemma via the Distributional JL
Lemma.

This Class:

- Finish Up proof of the JL lemma.
- Example applications to classification and clustering.

- Discuss connections to high dimensional geometry.



THE JOHNSON-LINDENSTRAUSS LEMMA

N

Johnson -Lindenstrauss Lemma: For any set of points
X1, ..., % € R?and € > 0 there exists a linear map M : RY — R™
such that m=0 (‘Og”) and letting X; = MX::

Foralli,j: (1= e)lIXi = Xjll2 < 1% = Xjll2 < (1 + €)lIXi — Xjl2-

Further, if M e R™*? has each entry chosen iid. from
N(0,1/m)and m = 0O (“)iig/é) M satisfies the guarantee with
probability > 1— 4.
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RANDOM PROJECTION
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random linear transformation
(random projection) compressed output point
(low dimensions)

_(logn
m= O( €2 )
input point
| (high dimensions)
- Canstore X,...,X, in n-m rather than n - d space. What about A1?

-+ Often don’t need to store explicitly - compute it on the fly.

- For i=1...d:
© X=X+ h(i) - x;(i)
where h : [d] — R™ is a random hash function outputting vectors
(the columns of ).



DISTRIBUTIONAL JL

We showed that the Johnson-Lindenstrauss Lemma follows from:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we set m = O (mgﬁ%) then for any

v © RY, with probability > 1 -4
(1=l < INYll2 < (1 + )1Vl

. J

Main Idea: Union bound over (9) difference vectors yj; = X — X;.
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DISTRIBUTIONAL JL PROOF

- Let y denote My and let N(j) denote the j row of M.
+ Forany j, () = (N(). %) = = X1, & - (i) where g ~ A7(0,1).
g - V(i) ~ N(0,¥(i)?): a normal distribution

variance y(2)
variance y(1) variance y(d)
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(1)—\/—[31 yA) + 92-y@2) + o + gn-y(@)]

¥ € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — y. M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable. 7




DISTRIBUTIONAL JL PROOF

Up Shot: Each entry of our compressed vector y is Gaussian:
§(j) ~ N(O, [¥]13/m).

E[Iy]2] = E ZY/(J’Y =Y E()]

So ¥ has the right norm in expectation.

¥ € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping ¥ — V. d: original dimension. m: compressed dimension,
g;: normally distributed random variable




DISTRIBUTIONAL JL PROOF

So Far: Each entry of our compressed vector y is Gaussian with :
Y(j) ~ N(0, [[¥l13/m) and E[[|¥I3] = [I¥13

19112 = Y, %(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)
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Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr(|z — EZ| > eEZ] < 2e~"€/8.




EXAMPLE APPLICATION: SVM

Support Vector Machines: A classic ML algorithm, where data is
classified with a hyperplane.
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JL Lemma implies that after projection into O
have (a,w) > c+ m/2 and (b,w) < c—m/2.

lo,,g,z”) dimensions, still

Upshot: Can random project and run SVM (much more efficiently) in 10
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EXAMPLE APPLICATION: SVM

Claim: After random projection into O (log”) dimensions, if
(d,w) >c+m > 0then (a,W) > c+m/2.

By JL Lemma: applied with e = m/4,
la— i3 < (1+ ) ld — w3
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EXAMPLE APPLICATION: R-MEANS CLUSTERING

Goal: Separate n points in d dimensional space into k groups.
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k-means Objective: Cost(Cy,...,Cy) = C:mrékz > K= 3.

J=1 )?Eck
Write in terms of distancgs:
o AL
Cost(Crs ..., Cr) = legkz Z X — %13

J=1 X1,%€Ck 12



EXAMPLE APPLICATION: R-MEANS CLUSTERING

k-means Objective: Cost(Cy,...,Cy) = mm Z > I% =%l
} 1 X1,%€C
) dimensions, for all pairs X1, X,

we randomly projectto m =0 (

(1= % = %l < ¥ = X[l < (1 + )% — Rl =

Letting Cost(Cy, ... ,Ck) = mm Z Z %1 — Xa||3

j 1 X1,%€Cx
(1—=¢€)Cost(C,...,Ck) < Cost(Cr,...,Cr) < (1+¢€)Cost(C,...,Ck)

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(Cy, ..., Ck). The optimal set of clusters
will have true cost within 1+ ce times the true optimal.
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The Johnson-Lindenstrauss Lemma and High
Dimensional Geometry

- High-dimensional Euclidean space looks very different from
low-dimensional space. So how can JL work?

- Are distances in high-dimensional meaningless, making JL
useless?
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ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space? Answer: d.
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NEARLY ORTHOGONAL VECTORS

What is the largest set of unit vectors in d-dimensional space that
have all pairwise dot products [{X, )| < €? (think e = .01)

1.d 2. @(d) 3. @(dz) 4. 2@(<c‘)

In fact, an exponentially large set of random vectors will be nearly
pairwise orthogonal with high probability!

Proof: Let X;,...,X; each have independent random entries set to
+1//d.

- X; is always a unit vector.

+ E[(%, %)] = 70.

* By a Chernoff bound, Pr[|(X;, X)| > €] < 2e=<'4/3,

- If we chose t = %eﬁzd“, using a union bound over all < t* = %eezd”
possible pairs, with probability > 1/2 all with be nearly orthogonal.
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CURSE OF DIMENSIONALITY

Up Shot: In d-dimensional space, a set of 26(€d) random unit
vectors have all pairwise dot products at most € (think e = .01)

2RI — 1712 o 17112 — 9%y
1Xi = X112 = [1Xill2 + [IX)[12 — 2%i% = 1.98.

Even with an exponential number of random vector samples,
we don't see any nearby vectors.

- Can make methods like nearest neighbor classification or
clustering useless.

Curse of dimensionality for sampling/learning functions in
high dimensional space — samples are very ‘sparse’ unless we
have a huge amount of data.

- Only hope is if we lots of structure (which we typically do...)
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CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if
N e R™*9 is a random matrix (linear map) with m = O (log”),

forX;, ..., X, € R? with high probability, for all i, :
(1= lIX = Xll2 < [INX; = AXill2 < (T4 )X — X2

If X1,...,X, are random unit vectors in d-dimensions, can
show that NX, ..., MNX, are essentially random unit vectors in
m-dimensions.

X1,...,Xp are sampled from the surface of B,y and Mxq,..., Ax,
are (approximately) sampled from the surface of Bpy.



CONNECTION TO DIMENSIONALITY REDUCTION

- In d dimensions, 2¢d random unit vectors will have all
pairwise dot products at most e with high probability.

- For any set of n near orthogonal vectors, Xi, ..., Xy, after JL
projection, MX;, ..., MX, will still have pairwise dot products
at most ce with high probability.

“Inm=0 loﬁ%” dimensions, 2(ce’m = 20(0gn) . 1 random
unit vectors will have all pairwise dot products at most ce
with high probability (i.e,, still be near orthogonal).

- m is chosen just large enough so that the odd geometry of
d-dimensional space will still hold on the n points in
question.
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Questions?
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