
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Spring 2020.
Lecture 11

0

logistics

• Problem Set 2 is due thus upcoming Sunday 3/8.
• Midterm is next Thursday, 3/12. See webpage for study
guide/practice questions.

• Let me know ASAP if you need accommodations (e.g.,
extended time).

• My office hours next Tuesday will focus on exam review. I will
hold them at the usual time, and before class at 10:15am.

• I am rearranging the next two lectures to spend more time
on the JL Lemma and randomized methods, before moving
on the spectral methods (PCA, spectral clustering, etc.)

1

midterm assessment process

Thanks for you feedback! Some specifics:

• More details in proofs and slower pace. Will try to find a
balance with this.

• Recap at the end of class.
• I will post ‘compressed’ versions of the slides. Not perfect,
but Iooking into ways to improve.

• After the midterm, I might split the homework assignments
into more smaller assignments to spread out the work more.

2

summary

Last Class: The Johnson-Lindenstrauss Lemma

• Low-distortion embeddings for any set of points via random
projection.

• Started on proof of the JL Lemma via the Distributional JL
Lemma.

This Class:

• Finish Up proof of the JL lemma.
• Example applications to classification and clustering.
• Discuss connections to high dimensional geometry.

3

the johnson-lindenstrauss lemma

Johnson-Lindenstrauss Lemma: For any set of points
⃗⃗x1, . . . ,⃗⃗ xn ∈ Rd and ϵ > 0 there exists a linear mapΠ : Rd → Rm
such that m = O

(
log n
ϵ2

)
and letting x̃i = Πx⃗i:

For all i, j : (1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

Further, if Π ∈ Rm×d has each entry chosen i.i.d. from
N (0, 1/m) and m = O

(
log n/δ

ϵ2

)
, Π satisfies the guarantee with

probability ≥ 1− δ.

4

random projection

• Can store x̃1, . . . , x̃n in n ·m rather than n · d space. What about Π?
• Often don’t need to store explicitly – compute it on the fly.
• For i = 1 . . .d :

• x̃j := x̃j + h(i) · xj(i)
where h : [d] → Rm is a random hash function outputting vectors
(the columns of Π). 5

distributional jl

We showed that the Johnson-Lindenstrauss Lemma follows from:

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ϵ2

)
, then for any

y⃗ ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥⃗y∥2 ≤ ∥Πy⃗∥2 ≤ (1+ ϵ)∥⃗y∥2

Main Idea: Union bound over
(n
2
)
difference vectors y⃗ij = x⃗i − x⃗j.

Π ∈ Rm×d : random projection matrix. d: original dimension. m: compressed
dimension, ϵ: embedding error, δ: embedding failure prob.

6

distributional jl proof

• Let ỹ denote Πy⃗ and let Π(j) denote the jth row of Π.
• For any j, ỹ(j) = ⟨Π(j), y⃗⟩ = 1√

m
∑d

i=1 gi · y⃗(i) where gi ∼ N (0, 1).

• gi · y⃗(i) ∼ N (0, y⃗(i)2): a normal distribution with variance y⃗(i)2.

ỹ(j) is also Gaussian, with ỹ(j) ∼ N (0, ∥⃗y∥22/m).

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable. 7

distributional jl proof

Up Shot: Each entry of our compressed vector ỹ is Gaussian:

ỹ(j) ∼ N (0, ∥⃗y∥22/m).

E[∥ỹ∥22] = E

 m∑
j=1

ỹ(j)2
 =

m∑
j=1

E[ỹ(j)2]

=
m∑
j=1

∥⃗y∥22
m = ∥⃗y∥22

So ỹ has the right norm in expectation.

How is ∥ỹ∥22 distributed? Does it concentrate?

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. d: original dimension. m: compressed dimension,
gi : normally distributed random variable

8

distributional jl proof

So Far: Each entry of our compressed vector ỹ is Gaussian with :

ỹ(j) ∼ N (0, ∥⃗y∥22/m) and E[∥ỹ∥22] = ∥⃗y∥22
∥ỹ∥22 =

∑m
i=1 ỹ(j)2 a Chi-Squared random variable with m degrees of

freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr [|Z− EZ| ≥ ϵEZ] ≤ 2e−mϵ2/8.

If we set m = O
(
log(1/δ)

ϵ2

)
, with probability 1− O(e− log(1/δ)) ≥ 1− δ:

(1− ϵ)∥⃗y∥22 ≤ ∥ỹ∥22 ≤ (1+ ϵ)∥⃗y∥22.

Gives the distributional JL Lemma and thus the classic JL Lemma!

y⃗ ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y⃗ → ỹ. d: original dimension. m: compressed dimension,
ϵ: embedding error, δ: embedding failure prob.

9

example application: svm

Support Vector Machines: A classic ML algorithm, where data is
classified with a hyperplane.

• For any point a⃗ in A,
⟨a⃗, w⃗⟩ ≥ c+m

• For any point b⃗ in B
⟨b⃗, w⃗⟩ ≤ c−m.

• Assume all vectors
have unit norm.

JL Lemma implies that after projection into O
(
log n
m2

)
dimensions, still

have ⟨ã,w⟩̃ ≥ c+m/2 and ⟨b,̃w⟩̃ ≤ c−m/2.

Upshot: Can random project and run SVM (much more efficiently) in
the lower dimensional space to find separator w.̃

10

example application: svm

Claim: After random projection into O
(
log n
m2

)
dimensions, if

⟨a⃗, w⃗⟩ ≥ c+m ≥ 0 then ⟨ã,w̃⟩ ≥ c+m/2.

By JL Lemma: applied with ϵ = m/4,

∥ã− w̃∥22 ≤
(
1+ m

4

)
∥a⃗− w⃗∥22

∥ã∥22 + ∥w̃∥22 − 2⟨ã,w̃⟩ ≤
(
1+ m

4

) (
∥a⃗∥22 + ∥w⃗∥22 − 2⟨a⃗, w⃗⟩

)
(
1+ m

4

)
2⟨a⃗, w⃗⟩ − 4 · m4 ≤ 2⟨ã,w̃⟩

⟨a⃗, w⃗⟩ − m
2 ≤ ⟨ã,w̃⟩

c+m− m
2 ≤ ⟨ã,w̃⟩.

11

example application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑
j=1

∑
x⃗∈Ck

∥⃗x− µj∥22.

Write in terms of distances:

Cost(C1, . . . , Ck) = min
C1,...Ck

k∑
j=1

∑
x⃗1 ,⃗x2∈Ck

∥⃗x1 − x⃗2∥22
12

example application: k-means clustering

k-means Objective: Cost(C1, . . . , Ck) = min
C1,...Ck

k∑
j=1

∑
x⃗1 ,⃗x2∈Ck

∥⃗x1 − x⃗2∥22 If

we randomly project to m = O
(
log n
ϵ2

)
dimensions, for all pairs x⃗1, x⃗2,

(1− ϵ)∥x̃1 − x̃2∥22 ≤ ∥⃗x1 − x⃗2∥22 ≤ (1+ ϵ)∥x̃1 − x̃2∥22 =⇒

Letting Cost(C1, . . . , Ck) = min
C1,...Ck

k∑
j=1

∑
x1̃,x̃2∈Ck

∥x1̃ − x̃2∥22

(1− ϵ)Cost(C1, . . . , Ck) ≤ Cost(C1, . . . , Ck) ≤ (1+ ϵ)Cost(C1, . . . , Ck)

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(C1, . . . , Ck). The optimal set of clusters
will have true cost within 1+ cϵ times the true optimal.

13

The Johnson-Lindenstrauss Lemma and High
Dimensional Geometry

• High-dimensional Euclidean space looks very different from
low-dimensional space. So how can JL work?

• Are distances in high-dimensional meaningless, making JL
useless?

14

orthogonal vectors

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space? Answer: d.

15

nearly orthogonal vectors

What is the largest set of unit vectors in d-dimensional space that
have all pairwise dot products |⟨⃗x, y⃗⟩| ≤ ϵ? (think ϵ = .01)

1. d 2. Θ(d) 3. Θ(d2) 4. 2Θ(d)

In fact, an exponentially large set of random vectors will be nearly
pairwise orthogonal with high probability!

Proof: Let x⃗1, . . . , x⃗t each have independent random entries set to
±1/

√
d.

• x⃗i is always a unit vector.

• E[⟨⃗xi, x⃗j⟩] = ?0.

• By a Chernoff bound, Pr[|⟨⃗xi, x⃗j⟩| ≥ ϵ] ≤ 2e−ϵ2d/3.

• If we chose t = 1
2e

ϵ2d/6, using a union bound over all ≤ t2 = 1
4e

ϵ2d/3

possible pairs, with probability ≥ 1/2 all with be nearly orthogonal.

16

curse of dimensionality

Up Shot: In d-dimensional space, a set of 2Θ(ϵ2d) random unit
vectors have all pairwise dot products at most ϵ (think ϵ = .01)

∥⃗xi − x⃗j∥22 = ∥⃗xi∥22 + ∥⃗xj∥22 − 2⃗xTi x⃗j ≥ 1.98.

Even with an exponential number of random vector samples,
we don’t see any nearby vectors.

• Can make methods like nearest neighbor classification or
clustering useless.

Curse of dimensionality for sampling/learning functions in
high dimensional space – samples are very ‘sparse’ unless we
have a huge amount of data.

• Only hope is if we lots of structure (which we typically do...)
17

connection to dimensionality reduction

Recall: The Johnson Lindenstrauss lemma states that if
Π ∈ Rm×d is a random matrix (linear map) with m = O

(
log n
ϵ2

)
,

for x⃗1, . . . , x⃗n ∈ Rd with high probability, for all i, j:

(1− ϵ)∥⃗xi − x⃗j∥2 ≤ ∥Πx⃗i −Πx⃗j∥2 ≤ (1+ ϵ)∥⃗xi − x⃗j∥2.

If x⃗1, . . . , x⃗n are random unit vectors in d-dimensions, can
show that Πx⃗1, . . . ,Πx⃗n are essentially random unit vectors in
m-dimensions.

x1, . . . , xn are sampled from the surface of Bd and Πx1, . . . ,Πxn
are (approximately) sampled from the surface of Bm.

18

connection to dimensionality reduction

• In d dimensions, 2ϵ2d random unit vectors will have all
pairwise dot products at most ϵ with high probability.

• For any set of n near orthogonal vectors, x⃗1, . . . , x⃗n, after JL
projection, Πx⃗1, . . . ,Πx⃗n will still have pairwise dot products
at most cϵ with high probability.

• In m = O
(
log n
ϵ2

)
dimensions, 2(cϵ)2m = 2O(log n) > n random

unit vectors will have all pairwise dot products at most cϵ
with high probability (i.e., still be near orthogonal).

• m is chosen just large enough so that the odd geometry of
d-dimensional space will still hold on the n points in
question.

19

Questions?

20

