
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 9

1

Logistics

• Problem Set 2 is due in roughly 2 weeks – Monday, 10/16 at
11:59pm.

• The midterm is the following Tuesday, 10/24 in class. I will post
review material later this week.

• There will be no quizzes due 10/16 or 10/23.

• Next week I am out of town for a conference. There is no class
on Tuesday. Thursday, class will be held virtually. Virtual office
hours TBD.

• This Thursday I will hold additional in person office hours after
class to answer questions on Problem Set 2.

• The class will be filmed this Thursday. The footage will be ’b-roll’
with no sound. Let me know if you do not feel comfortable
being filmed. Show up 10-15 minutes early to participate in
some staged shots (and get two bonus points on the quiz).

2

-
office barsypmbdad

Tooms

÷

Summary

Last Class:

• Distinct elements counting in streams vis MinHashing.

• The Median Trick to boost success probability.

This Class:

• High-level overview of practical distinct elements algorithms.

• Introduction of Jaccard similarity and the similarity search
problem.

• Locality sensitive hashing for fast similarity search.

• MinHashing for Jaccard similarity search.

3

#

Summary

Last Class:

• Distinct elements counting in streams vis MinHashing.

• The Median Trick to boost success probability.

This Class:

• High-level overview of practical distinct elements algorithms.

• Introduction of Jaccard similarity and the similarity search
problem.

• Locality sensitive hashing for fast similarity search.

• MinHashing for Jaccard similarity search.

3

←

¥

Quiz

• Many people reported being most interested in Bloom Filters
and their applications. I’ll try to keep highlighting real world
applications moving forward.

• People are a bit concerned/confused about applying
concentration bounds, especially exponential concentration
bounds. There will be some more practice for this on Problem
Set 2, and I will make sure to include plenty of practice
questions on this for the midterm review material.

4

-

z

Quiz

5

O
hush K t.ws

-

Y
m

-

k : D
⇒

*
miss"8iP

i
s : M a x(ABK) where A B K - [0,1]
£1-minting,'d b o n d s , -p ,

I#¥m¥n
:B'Dsi.'g:}

Space Complexity

Hashing for Distinct Elements:

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions
• s1, s2, . . . , sk := 1

• For i = 1, . . . ,n
• For j=1,…, k, sj := min(sj,hj(xi))

• s := 1
k
∑k

j=1 sj
• Return d̂ = 1

s − 1

• Setting k = 1
ε2·δ , algorithm returns d̂ with |d− d̂| ≤ 4ε · d with

probability at least 1− δ.

• Space complexity is k = 1
ε2·δ real numbers s1, . . . , sk.

• Can be improved to O(log(1/δ)/ε2) via the median trick.
6

I
-

"gigs

[0 = 2 '÷.:&,
-

Improved Failure Rate

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ε2 = 5
ε2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• We expect 4/5 of the estimates to fall in [(1− 4ε)d, (1+ 4ε)d].

• If > 1/2 of estimates fall in [(1− 4ε)d, (1+ 4ε)d], then the
median will.

• Can prove this will happen with probability at least 1− δ via a
Chernoff bound. 7

e r
- i s 'Fe r-

-

8 0 % 1
- a

[

Distinct Elements in Practice

Our algorithm uses continuous valued fully random hash functions.

Can’t be implemented...

• The idea of using the minimum hash value of x1, . . . , xn to
estimate the number of distinct elements naturally extends to
when the hash functions map to discrete values.

• Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.
The more distinct hashes we see,
the higher we expect this
maximum to be.

8

-

Distinct Elements in Practice

Our algorithm uses continuous valued fully random hash functions.
Can’t be implemented...

• The idea of using the minimum hash value of x1, . . . , xn to
estimate the number of distinct elements naturally extends to
when the hash functions map to discrete values.

• Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.
The more distinct hashes we see,
the higher we expect this
maximum to be.

8

Distinct Elements in Practice

Our algorithm uses continuous valued fully random hash functions.
Can’t be implemented...

• The idea of using the minimum hash value of x1, . . . , xn to
estimate the number of distinct elements naturally extends to
when the hash functions map to discrete values.

• Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.
The more distinct hashes we see,
the higher we expect this
maximum to be.

8

Distinct Elements in Practice

Our algorithm uses continuous valued fully random hash functions.
Can’t be implemented...

• The idea of using the minimum hash value of x1, . . . , xn to
estimate the number of distinct elements naturally extends to
when the hash functions map to discrete values.

• Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.
The more distinct hashes we see,
the higher we expect this
maximum to be.

8

Distinct Elements in Practice

Our algorithm uses continuous valued fully random hash functions.
Can’t be implemented...

• The idea of using the minimum hash value of x1, . . . , xn to
estimate the number of distinct elements naturally extends to
when the hash functions map to discrete values.

• Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.
The more distinct hashes we see,
the higher we expect this
maximum to be.

8

=

Distinct Elements in Practice

Our algorithm uses continuous valued fully random hash functions.
Can’t be implemented...

• The idea of using the minimum hash value of x1, . . . , xn to
estimate the number of distinct elements naturally extends to
when the hash functions map to discrete values.

• Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.

The more distinct hashes we see,
the higher we expect this
maximum to be.

8

=

I s

Distinct Elements in Practice

Our algorithm uses continuous valued fully random hash functions.
Can’t be implemented...

• The idea of using the minimum hash value of x1, . . . , xn to
estimate the number of distinct elements naturally extends to
when the hash functions map to discrete values.

• Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.
The more distinct hashes we see,
the higher we expect this
maximum to be.

8

I
-

LogLog Counting of Distinct Elements

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

a) O(1) b) O(log d) c) O(
√
d) d) O(d)

Pr(h(xi) has x trailing zeros) =

1
2x

=
1
d
.

So with d distinct hashes, expect to see 1 with log d trailing zeros.
Expect m ≈ log d.

m takes log log d bits to store.

Total Space: O
(

log log d
ε2

)
for an ε approximate count.

Note: Careful averaging of estimates from multiple hash functions.

9

LogLog Counting of Distinct Elements

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

a) O(1) b) O(log d) c) O(
√
d) d) O(d)

Pr(h(xi) has x trailing zeros) =

1
2x

=
1
d
.

So with d distinct hashes, expect to see 1 with log d trailing zeros.
Expect m ≈ log d.

m takes log log d bits to store.

Total Space: O
(

log log d
ε2

)
for an ε approximate count.

Note: Careful averaging of estimates from multiple hash functions.

9

D='s

- 8 o

LogLog Counting of Distinct Elements

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

Pr(h(xi) has x trailing zeros) =

1
2x

=
1
d
.

So with d distinct hashes, expect to see 1 with log d trailing zeros.
Expect m ≈ log d.

m takes log log d bits to store.

Total Space: O
(

log log d
ε2

)
for an ε approximate count.

Note: Careful averaging of estimates from multiple hash functions.

9

LogLog Counting of Distinct Elements

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

Pr(h(xi) has x trailing zeros) = 1
2x

=
1
d
.

So with d distinct hashes, expect to see 1 with log d trailing zeros.
Expect m ≈ log d.

m takes log log d bits to store.

Total Space: O
(

log log d
ε2

)
for an ε approximate count.

Note: Careful averaging of estimates from multiple hash functions.

9

-

t '

LogLog Counting of Distinct Elements

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

Pr(h(xi) has log d trailing zeros) = 1
2log d

=
1
d
.

So with d distinct hashes, expect to see 1 with log d trailing zeros.
Expect m ≈ log d.

m takes log log d bits to store.

Total Space: O
(

log log d
ε2

)
for an ε approximate count.

Note: Careful averaging of estimates from multiple hash functions.

9

LogLog Counting of Distinct Elements

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

Pr(h(xi) has log d trailing zeros) = 1
2log d

=
1
d
.

So with d distinct hashes, expect to see 1 with log d trailing zeros.
Expect m ≈ log d.

m takes log log d bits to store.

Total Space: O
(

log log d
ε2

)
for an ε approximate count.

Note: Careful averaging of estimates from multiple hash functions.

9

LogLog Counting of Distinct Elements

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

Pr(h(xi) has log d trailing zeros) = 1
2log d

=
1
d
.

So with d distinct hashes, expect to see 1 with log d trailing zeros.
Expect m ≈ log d.

m takes log log d bits to store.

Total Space: O
(

log log d
ε2

)
for an ε approximate count.

Note: Careful averaging of estimates from multiple hash functions.

9

[
hk i) = ,gg¥P

" 2

2M€17

= -

LogLog Counting of Distinct Elements

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

Pr(h(xi) has log d trailing zeros) = 1
2log d

=
1
d
.

So with d distinct hashes, expect to see 1 with log d trailing zeros.
Expect m ≈ log d. m takes log log d bits to store.

Total Space: O
(

log log d
ε2

)
for an ε approximate count.

Note: Careful averaging of estimates from multiple hash functions.

9

-

d ? 2128

st#¥#%jx) bits

LogLog Counting of Distinct Elements

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

Pr(h(xi) has log d trailing zeros) = 1
2log d

=
1
d
.

So with d distinct hashes, expect to see 1 with log d trailing zeros.
Expect m ≈ log d. m takes log log d bits to store.

Total Space: O
(

log log d
ε2

)
for an ε approximate count.

Note: Careful averaging of estimates from multiple hash functions.

9

⇐

LogLog Counting of Distinct Elements

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements
based on maximum number of
trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

Pr(h(xi) has log d trailing zeros) = 1
2log d

=
1
d
.

So with d distinct hashes, expect to see 1 with log d trailing zeros.
Expect m ≈ log d. m takes log log d bits to store.

Total Space: O
(

log log d
ε2

)
for an ε approximate count.

Note: Careful averaging of estimates from multiple hash functions. 9

LogLog Space Guarantees

Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

space used = O
(
log log d

ε2

)

=
1.04 · %log2 log2 d&

ε2
bits1

=
1.04 · 5
.022

= 13000 bits ≈ 1.6 kB!

Mergeable Sketch: Consider the case (essentially always in practice)
that the items are processed on different machines.

• Given data structures (sketches) HLL(x1, . . . , xn), HLL(y1, . . . , yn)
is is easy to merge them to give HLL(x1, . . . , xn, y1, . . . , yn). How?

• Set the maximum # of trailing zeros to the maximum in the two
sketches.

1. 1.04 is the constant in the HyperLogLog analysis. Not important!

10

d E i .0 2

LogLog Space Guarantees

Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

space used = O
(
log log d

ε2

)

=
1.04 · %log2 log2 d&

ε2
bits1

=
1.04 · 5
.022

= 13000 bits ≈ 1.6 kB!

Mergeable Sketch: Consider the case (essentially always in practice)
that the items are processed on different machines.

• Given data structures (sketches) HLL(x1, . . . , xn), HLL(y1, . . . , yn)
is is easy to merge them to give HLL(x1, . . . , xn, y1, . . . , yn). How?

• Set the maximum # of trailing zeros to the maximum in the two
sketches.

1. 1.04 is the constant in the HyperLogLog analysis. Not important! 10

LogLog Space Guarantees

Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

space used = O
(
log log d

ε2

)

=
1.04 · %log2 log2 d&

ε2
bits1

=
1.04 · 5
.022

= 13000 bits ≈ 1.6 kB!

Mergeable Sketch: Consider the case (essentially always in practice)
that the items are processed on different machines.

• Given data structures (sketches) HLL(x1, . . . , xn), HLL(y1, . . . , yn)
is is easy to merge them to give HLL(x1, . . . , xn, y1, . . . , yn). How?

• Set the maximum # of trailing zeros to the maximum in the two
sketches.

1. 1.04 is the constant in the HyperLogLog analysis. Not important! 10

-

i s

- - -

LogLog Space Guarantees

Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

space used = O
(
log log d

ε2

)

=
1.04 · %log2 log2 d&

ε2
bits1

=
1.04 · 5
.022

= 13000 bits ≈ 1.6 kB!

Mergeable Sketch: Consider the case (essentially always in practice)
that the items are processed on different machines.

• Given data structures (sketches) HLL(x1, . . . , xn), HLL(y1, . . . , yn)
is is easy to merge them to give HLL(x1, . . . , xn, y1, . . . , yn). How?

• Set the maximum # of trailing zeros to the maximum in the two
sketches.

1. 1.04 is the constant in the HyperLogLog analysis. Not important! 10

-

LogLog Space Guarantees

Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

space used = O
(
log log d

ε2

)

=
1.04 · %log2 log2 d&

ε2
bits1

=
1.04 · 5
.022

= 13000 bits ≈ 1.6 kB!

Mergeable Sketch: Consider the case (essentially always in practice)
that the items are processed on different machines.

• Given data structures (sketches) HLL(x1, . . . , xn), HLL(y1, . . . , yn)
is is easy to merge them to give HLL(x1, . . . , xn, y1, . . . , yn).

How?

• Set the maximum # of trailing zeros to the maximum in the two
sketches.

1. 1.04 is the constant in the HyperLogLog analysis. Not important! 10

- .

LogLog Space Guarantees

Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

space used = O
(
log log d

ε2

)

=
1.04 · %log2 log2 d&

ε2
bits1

=
1.04 · 5
.022

= 13000 bits ≈ 1.6 kB!

Mergeable Sketch: Consider the case (essentially always in practice)
that the items are processed on different machines.

• Given data structures (sketches) HLL(x1, . . . , xn), HLL(y1, . . . , yn)
is is easy to merge them to give HLL(x1, . . . , xn, y1, . . . , yn). How?

• Set the maximum # of trailing zeros to the maximum in the two
sketches.

1. 1.04 is the constant in the HyperLogLog analysis. Not important! 10

-

LogLog Space Guarantees

Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

space used = O
(
log log d

ε2

)

=
1.04 · %log2 log2 d&

ε2
bits1

=
1.04 · 5
.022

= 13000 bits ≈ 1.6 kB!

Mergeable Sketch: Consider the case (essentially always in practice)
that the items are processed on different machines.

• Given data structures (sketches) HLL(x1, . . . , xn), HLL(y1, . . . , yn)
is is easy to merge them to give HLL(x1, . . . , xn, y1, . . . , yn). How?

• Set the maximum # of trailing zeros to the maximum in the two
sketches.

1. 1.04 is the constant in the HyperLogLog analysis. Not important! 10

" I¥ EM " I I s

l i k e l¥¥t§

r m m'

←
-

HyperLogLog In Practice

Implementations: Google PowerDrill, Facebook Presto, Twitter
Algebird, Amazon Redshift.

Use Case: Exploratory SQL-like queries on tables with 100s billions of
rows. ∼ 5 million count distinct queries per day.

E.g.,

• Count number if distinct users in Germany that made at least
one search containing the word ‘auto’ in the last month.

• Count number of distinct subject lines in emails sent by users
that have registered in the last week, in comparison to number
of emails sent overall (to estimate rates of spam accounts).

Traditional COUNT, DISTINCT SQL calls are far too slow, especially
when the data is distributed across many servers.

11

HyperLogLog In Practice

Implementations: Google PowerDrill, Facebook Presto, Twitter
Algebird, Amazon Redshift.

Use Case: Exploratory SQL-like queries on tables with 100s billions of
rows. ∼ 5 million count distinct queries per day.

E.g.,

• Count number if distinct users in Germany that made at least
one search containing the word ‘auto’ in the last month.

• Count number of distinct subject lines in emails sent by users
that have registered in the last week, in comparison to number
of emails sent overall (to estimate rates of spam accounts).

Traditional COUNT, DISTINCT SQL calls are far too slow, especially
when the data is distributed across many servers.

11

HyperLogLog In Practice

Implementations: Google PowerDrill, Facebook Presto, Twitter
Algebird, Amazon Redshift.

Use Case: Exploratory SQL-like queries on tables with 100s billions of
rows. ∼ 5 million count distinct queries per day.

E.g.,

• Count number if distinct users in Germany that made at least
one search containing the word ‘auto’ in the last month.

• Count number of distinct subject lines in emails sent by users
that have registered in the last week, in comparison to number
of emails sent overall (to estimate rates of spam accounts).

Traditional COUNT, DISTINCT SQL calls are far too slow, especially
when the data is distributed across many servers.

11

HyperLogLog In Practice

Implementations: Google PowerDrill, Facebook Presto, Twitter
Algebird, Amazon Redshift.

Use Case: Exploratory SQL-like queries on tables with 100s billions of
rows. ∼ 5 million count distinct queries per day. E.g.,

• Count number if distinct users in Germany that made at least
one search containing the word ‘auto’ in the last month.

• Count number of distinct subject lines in emails sent by users
that have registered in the last week, in comparison to number
of emails sent overall (to estimate rates of spam accounts).

Traditional COUNT, DISTINCT SQL calls are far too slow, especially
when the data is distributed across many servers.

11

HyperLogLog In Practice

Implementations: Google PowerDrill, Facebook Presto, Twitter
Algebird, Amazon Redshift.

Use Case: Exploratory SQL-like queries on tables with 100s billions of
rows. ∼ 5 million count distinct queries per day. E.g.,

• Count number if distinct users in Germany that made at least
one search containing the word ‘auto’ in the last month.

• Count number of distinct subject lines in emails sent by users
that have registered in the last week, in comparison to number
of emails sent overall (to estimate rates of spam accounts).

Traditional COUNT, DISTINCT SQL calls are far too slow, especially
when the data is distributed across many servers.

11

=

E

Questions?

12

Another Fundamental Problem

Jaccard Index: A similarity measure between two sets.

J(A,B) = |A ∩ B|
|A ∪ B| =

shared elements
total elements

.

Natural measure for similarity between bit strings – interpret an n bit
string as a set, containing the elements corresponding the positions
of its ones. J(x, y) = # shared ones

total ones .

13

§
- I

§ O
"' " '" '

JIA,B)= § U
-

s

Search with Jaccard Similarity

J(A,B) = |A ∩ B|
|A ∪ B| =

shared elements
total elements

.

Want Fast Implementations For:

• Near Neighbor Search: Have a database of n sets/bit strings
and given a set A, want to find if it has high Jaccard similarity to
anything in the database. Ω(n) time with a linear scan.

• All-pairs Similarity Search: Have n different sets/bit strings and
want to find all pairs with high Jaccard similarity. Ω(n2) time if
we check all pairs explicitly.

Will speed up via randomized locality sensitive hashing.

14

¥

Application: Document Similarity

Document Similarity:

• E.g., to detect plagiarism, copyright infringement, duplicate
webpages, spam.

• Use Shingling + Jaccard similarity. (n-grams, k-mers)

15

I =

Application: Document Similarity

Document Similarity:

• E.g., to detect plagiarism, copyright infringement, duplicate
webpages, spam.

• Use Shingling + Jaccard similarity. (n-grams, k-mers)

15

Application: Audio Search

Audio Fingerprinting:

• E.g., in audio search (Shazam), Earthquake detection.
• Represent sound clip via a binary ‘fingerprint’ then
compare with Jaccard similarity.

16

f -
- -

1- ↳

Application: Collaborative Filtering

Online recommendation systems are often based on collaborative
filtering. Simplest approach: find similar users and make
recommendations based on those users.

• Twitter: represent a user as the set of accounts they follow.
Match users based on the Jaccard similarity of these sets.
Recommend that you follow accounts followed by similar users.

• Netflix: look at sets of movies watched. Amazon: look at
products purchased, etc.

17

Application: Collaborative Filtering

Online recommendation systems are often based on collaborative
filtering. Simplest approach: find similar users and make
recommendations based on those users.

• Twitter: represent a user as the set of accounts they follow.
Match users based on the Jaccard similarity of these sets.
Recommend that you follow accounts followed by similar users.

• Netflix: look at sets of movies watched. Amazon: look at
products purchased, etc.

17

Application: Collaborative Filtering

Online recommendation systems are often based on collaborative
filtering. Simplest approach: find similar users and make
recommendations based on those users.

• Twitter: represent a user as the set of accounts they follow.
Match users based on the Jaccard similarity of these sets.
Recommend that you follow accounts followed by similar users.

• Netflix: look at sets of movies watched. Amazon: look at
products purchased, etc. 17

Application: Entity Resolution

Entity Resolution Problem: Want to combine records from multiple
data sources that refer to the same entities.

• E.g. data on individuals from voting registrations, property
records, and social media accounts. Names and addresses may
not exactly match, due to typos, nicknames, moves, etc.

• Still want to match records that all refer to the same person
using all pairs similarity search.

See Section 3.8.2 of Mining Massive Datasets for a discussion of a
real world example involving 1 million customers. Naively this would
be

(1000000
2

)
≈ 500 billion pairs of customers to check!

18

Application: Entity Resolution

Entity Resolution Problem: Want to combine records from multiple
data sources that refer to the same entities.

• E.g. data on individuals from voting registrations, property
records, and social media accounts. Names and addresses may
not exactly match, due to typos, nicknames, moves, etc.

• Still want to match records that all refer to the same person
using all pairs similarity search.

See Section 3.8.2 of Mining Massive Datasets for a discussion of a
real world example involving 1 million customers. Naively this would
be

(1000000
2

)
≈ 500 billion pairs of customers to check!

18

I
• -

Application: Entity Resolution

Entity Resolution Problem: Want to combine records from multiple
data sources that refer to the same entities.

• E.g. data on individuals from voting registrations, property
records, and social media accounts. Names and addresses may
not exactly match, due to typos, nicknames, moves, etc.

• Still want to match records that all refer to the same person
using all pairs similarity search.

See Section 3.8.2 of Mining Massive Datasets for a discussion of a
real world example involving 1 million customers. Naively this would
be

(1000000
2

)
≈ 500 billion pairs of customers to check!

18

=

Application: Spam and Fraud Detection

Many applications to spam/fraud detection. E.g.

• Fake Reviews: Very common on websites like Amazon.
Detection often looks for (near) duplicate reviews on
similar products, which have been copied. ‘Near duplicate’
measured with shingles + Jaccard similarity.

• Lateral phishing: Phishing emails sent to addresses at a
business coming from a legitimate email address at the
same business that has been compromised.

• One method of detection looks at the recipient list of an
email and checks if it has small Jaccard similarity with any
previous recipient lists. If not, the email is flagged as
possible spam.

19

Application: Spam and Fraud Detection

Many applications to spam/fraud detection. E.g.

• Fake Reviews: Very common on websites like Amazon.
Detection often looks for (near) duplicate reviews on
similar products, which have been copied. ‘Near duplicate’
measured with shingles + Jaccard similarity.

• Lateral phishing: Phishing emails sent to addresses at a
business coming from a legitimate email address at the
same business that has been compromised.

• One method of detection looks at the recipient list of an
email and checks if it has small Jaccard similarity with any
previous recipient lists. If not, the email is flagged as
possible spam.

19

Application: Spam and Fraud Detection

Many applications to spam/fraud detection. E.g.

• Fake Reviews: Very common on websites like Amazon.
Detection often looks for (near) duplicate reviews on
similar products, which have been copied. ‘Near duplicate’
measured with shingles + Jaccard similarity.

• Lateral phishing: Phishing emails sent to addresses at a
business coming from a legitimate email address at the
same business that has been compromised.

• One method of detection looks at the recipient list of an
email and checks if it has small Jaccard similarity with any
previous recipient lists. If not, the email is flagged as
possible spam.

19

-

