
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 8

1

Summary

Last Class:

• Bloom filter analysis and optimization of parameters.

This Class:

• Streaming algorithms and distinct elements estimation via
hashing.

• Analysis of the distinct elements algorithm.

• The median trick for boosting success probability.

• Sketch of the ideas behind practical algorithms for distinct
elements estimation.

2

K s 1 h 2 1
^

Summary

Last Class:

• Bloom filter analysis and optimization of parameters.

This Class:

• Streaming algorithms and distinct elements estimation via
hashing.

• Analysis of the distinct elements algorithm.

• The median trick for boosting success probability.

• Sketch of the ideas behind practical algorithms for distinct
elements estimation.

2

-

T

Streaming Algorithms

Stream Processing: Have a massive dataset X with n items
x1, x2, . . . , xn that arrive in a continuous stream. Not nearly
enough space to store all the items (in a single location).

• Still want to analyze and learn from this data.
• Typically must compress the data on the fly, storing a data
structure from which you can still learn useful information.

• Often the compression is randomized. E.g., bloom filters.
• Compared to traditional algorithm design, which focuses
on minimizing runtime, the big question here is how much
space is needed to answer queries of interest.

3

e -

Some Examples

• Sensor data: images from telescopes (30 terabytes per night
from the Vera C. Rubin Observatory), readings from seismometer
arrays monitoring and predicting earthquake activity, traffic
cameras and travel time sensors (Smart Cities), electrical grid
monitoring.

• Internet Traffic: 8.5 billion Google searches, billions of ad-clicks
and other logs from instrumented webpages, IPs routed by
network switches, ...

• Datasets in Machine Learning: When training e.g. a neural
network on a large dataset (ImageNet with 14 million images or
LLaMA-2 on trillions of tokens of text), the data is typically
processed in a stream due to storage limitations.

4

[
[

[=

Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements in the stream.
E.g.,

1, 5, 7, 5, 2, 1 → 4 distinct elements

Applications:

• Distinct IP addresses clicking on an ad or visiting a site.

• Distinct values in a database column (for estimating sizes of
joins and group bys).

• Number of distinct search engine queries.

• Counting distinct motifs in large DNA sequences.

Google Sawzall, Facebook Presto, Apache Drill, Twitter Algebird

5

-000,0-

Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements in the stream.
E.g.,

1, 5, 7, 5, 2, 1 → 4 distinct elements

Applications:

• Distinct IP addresses clicking on an ad or visiting a site.

• Distinct values in a database column (for estimating sizes of
joins and group bys).

• Number of distinct search engine queries.

• Counting distinct motifs in large DNA sequences.

Google Sawzall, Facebook Presto, Apache Drill, Twitter Algebird

5

O
n : O

w h e n x arrives
n s h t t

-

-
count discount

Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements in the stream.
E.g.,

1, 5, 7, 5, 2, 1 → 4 distinct elements

Applications:

• Distinct IP addresses clicking on an ad or visiting a site.

• Distinct values in a database column (for estimating sizes of
joins and group bys).

• Number of distinct search engine queries.

• Counting distinct motifs in large DNA sequences.

Google Sawzall, Facebook Presto, Apache Drill, Twitter Algebird

5

@iiinxaeri_ltDdsdHtDd-
ifxeBF.ndonothinge l s e d i di t ; a dd x to-BF

Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

6

Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

6

[-

µ : . 7321
-

=

Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

6

Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

6

Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

6

Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

6

Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

6

Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

6

-

Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

6

a 7 -b z
X , X LX , X y

→

Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

6

Hashing for Distinct Elements

Distinct Elements (Count-Distinct) Problem: Given a stream
x1, . . . , xn, estimate the number of distinct elements.

Min-Hashing for Distinct Elements (variant of Flajolet-Martin):

• Let h : U → [0, 1] be a random hash function (with a real valued
output)

• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

6

ds distinctelements
relents

@ 5 : m m o f d random
rules.

n " O O O O
s a

- - - -

•

Hashing for Distinct Elements

Min-Hashing for Distinct Elements:

• Let h : U → [0, 1] be a random hash function (with a real valued output)
• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

• After all items are processed, s is the minimum of d points
chosen uniformly at random on [0, 1]. Where
d = # distinct elements.

• Intuition: The larger d is, the smaller we expect s to be.

• Same idea as Flajolet-Martin algorithm and HyperLogLog, except
they use discrete hash functions.

7

Hashing for Distinct Elements

Min-Hashing for Distinct Elements:

• Let h : U → [0, 1] be a random hash function (with a real valued output)
• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

• After all items are processed, s is the minimum of d points
chosen uniformly at random on [0, 1]. Where
d = # distinct elements.

• Intuition: The larger d is, the smaller we expect s to be.

• Same idea as Flajolet-Martin algorithm and HyperLogLog, except
they use discrete hash functions.

7

-

-

Hashing for Distinct Elements

Min-Hashing for Distinct Elements:

• Let h : U → [0, 1] be a random hash function (with a real valued output)
• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

• After all items are processed, s is the minimum of d points
chosen uniformly at random on [0, 1]. Where
d = # distinct elements.

• Intuition: The larger d is, the smaller we expect s to be.

• Same idea as Flajolet-Martin algorithm and HyperLogLog, except
they use discrete hash functions.

7

Hashing for Distinct Elements

Min-Hashing for Distinct Elements:

• Let h : U → [0, 1] be a random hash function (with a real valued output)
• s := 1

• For i = 1, . . . ,n
• s := min(s,h(xi))

• Return d̃ = 1
s − 1

• After all items are processed, s is the minimum of d points
chosen uniformly at random on [0, 1]. Where
d = # distinct elements.

• Intuition: The larger d is, the smaller we expect s to be.

• Same idea as Flajolet-Martin algorithm and HyperLogLog, except
they use discrete hash functions. 7

#

I s , ↳y
" ' " '"" I g-i:3

- -

-

-

[

Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

E[s] = 1
d+ 1

(using E(s) =
∫ ∞

0
Pr(s > x)dx) + calculus)

• So our estimate d̂ = 1
s − 1 is correct if s exactly equals its

expectation.

Does this mean E[d̂] = d? No, but:

• Approximation is robust: if |s− E[s]| ≤ ε · E[s] for any
ε ∈ (0, 1/2) and a small constant c ≤ 4:

(1− cε)d ≤ d̂ ≤ (1+ cε)d

.

8

C

Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

E[s] =

1
d+ 1

(using E(s) =
∫ ∞

0
Pr(s > x)dx) + calculus)

• So our estimate d̂ = 1
s − 1 is correct if s exactly equals its

expectation.

Does this mean E[d̂] = d? No, but:

• Approximation is robust: if |s− E[s]| ≤ ε · E[s] for any
ε ∈ (0, 1/2) and a small constant c ≤ 4:

(1− cε)d ≤ d̂ ≤ (1+ cε)d

.

8

¥

Iii:: ±. ¥ :

Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

E[s] = 1
d+ 1

(using E(s) =
∫ ∞

0
Pr(s > x)dx) + calculus)

• So our estimate d̂ = 1
s − 1 is correct if s exactly equals its

expectation.

Does this mean E[d̂] = d? No, but:

• Approximation is robust: if |s− E[s]| ≤ ε · E[s] for any
ε ∈ (0, 1/2) and a small constant c ≤ 4:

(1− cε)d ≤ d̂ ≤ (1+ cε)d

.

8

1 -

Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

E[s] = 1
d+ 1

(using E(s) =
∫ ∞

0
Pr(s > x)dx) + calculus)

• So our estimate d̂ = 1
s − 1 is correct if s exactly equals its

expectation.

Does this mean E[d̂] = d? No, but:

• Approximation is robust: if |s− E[s]| ≤ ε · E[s] for any
ε ∈ (0, 1/2) and a small constant c ≤ 4:

(1− cε)d ≤ d̂ ≤ (1+ cε)d

.

8

P r e >t):O w i n t > I

÷÷Is d±-I ±

Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

E[s] = 1
d+ 1

(using E(s) =
∫ ∞

0
Pr(s > x)dx) + calculus)

• So our estimate d̂ = 1
s − 1 is correct if s exactly equals its

expectation. Does this mean E[d̂] = d?

No, but:

• Approximation is robust: if |s− E[s]| ≤ ε · E[s] for any
ε ∈ (0, 1/2) and a small constant c ≤ 4:

(1− cε)d ≤ d̂ ≤ (1+ cε)d

.

8

{collision
i n : (I)

t.tn c
t

-
u

* G)st, Eid:(Ft's)- l'II's.tl#Jdtl

Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

E[s] = 1
d+ 1

(using E(s) =
∫ ∞

0
Pr(s > x)dx) + calculus)

• So our estimate d̂ = 1
s − 1 is correct if s exactly equals its

expectation. Does this mean E[d̂] = d? No, but:

• Approximation is robust: if |s− E[s]| ≤ ε · E[s] for any
ε ∈ (0, 1/2) and a small constant c ≤ 4:

(1− cε)d ≤ d̂ ≤ (1+ cε)d

.

8

Performance in Expectation

s is the minimum of d points chosen uniformly at random on [0, 1].
Where d = # distinct elements.

E[s] = 1
d+ 1

(using E(s) =
∫ ∞

0
Pr(s > x)dx) + calculus)

• So our estimate d̂ = 1
s − 1 is correct if s exactly equals its

expectation. Does this mean E[d̂] = d? No, but:

• Approximation is robust: if |s− E[s]| ≤ ε · E[s] for any
ε ∈ (0, 1/2) and a small constant c ≤ 4:

(1− cε)d ≤ d̂ ≤ (1+ cε)d

.
8

← I

Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = 1
d+ 1

and Var[s] ≤ 1
(d+ 1)2

(also via calculus)

.

Chebyshev’s Inequality:

Pr [|s− E[s]| ≥ εE[s]] ≤ Var[s]
(εE[s])2 =

1
ε2

.

Bound is vacuous for any ε < 1. How can we improve accuracy?

s: minimum of d distinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d̂ = 1

s − 1: estimate of # distinct elements d.

9

- -

Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = 1
d+ 1

and Var[s] ≤ 1
(d+ 1)2

(also via calculus).

Chebyshev’s Inequality:

Pr [|s− E[s]| ≥ εE[s]] ≤ Var[s]
(εE[s])2 =

1
ε2

.

Bound is vacuous for any ε < 1. How can we improve accuracy?

s: minimum of d distinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d̂ = 1

s − 1: estimate of # distinct elements d.

9

Chrbyst

Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = 1
d+ 1

and Var[s] ≤ 1
(d+ 1)2

(also via calculus).

Chebyshev’s Inequality:

Pr [|s− E[s]| ≥ εE[s]] ≤ Var[s]
(εE[s])2

=
1
ε2

.

Bound is vacuous for any ε < 1. How can we improve accuracy?

s: minimum of d distinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d̂ = 1

s − 1: estimate of # distinct elements d.

9

- - s

Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = 1
d+ 1

and Var[s] ≤ 1
(d+ 1)2

(also via calculus).

Chebyshev’s Inequality:

Pr [|s− E[s]| ≥ εE[s]] ≤ Var[s]
(εE[s])2 =

1
ε2
.

Bound is vacuous for any ε < 1. How can we improve accuracy?

s: minimum of d distinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d̂ = 1

s − 1: estimate of # distinct elements d.

9

- -

÷:" I .

Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = 1
d+ 1

and Var[s] ≤ 1
(d+ 1)2

(also via calculus).

Chebyshev’s Inequality:

Pr [|s− E[s]| ≥ εE[s]] ≤ Var[s]
(εE[s])2 =

1
ε2
.

Bound is vacuous for any ε < 1.

How can we improve accuracy?

s: minimum of d distinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d̂ = 1

s − 1: estimate of # distinct elements d.

9

- highermount?/chargehash lighte
n?-

Initial Concentration Bound

So question is how well s concentrates around its mean.

E[s] = 1
d+ 1

and Var[s] ≤ 1
(d+ 1)2

(also via calculus).

Chebyshev’s Inequality:

Pr [|s− E[s]| ≥ εE[s]] ≤ Var[s]
(εE[s])2 =

1
ε2
.

Bound is vacuous for any ε < 1. How can we improve accuracy?

s: minimum of d distinct hashes chosen randomly over [0, 1], computed by
hashing algorithm. d̂ = 1

s − 1: estimate of # distinct elements d.

9

Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

• Let h : U → [0, 1] be a random hash function

• s := 1

• For i = 1, . . . ,n

• s := min(s,h(xi))

• Return d̂ = 1
s − 1

10

Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

• Let h : U → [0, 1] be a random hash function

• s := 1

• For i = 1, . . . ,n

• s := min(s,h(xi))

• Return d̂ = 1
s − 1

10

Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions

• s := 1

• For i = 1, . . . ,n

• s := min(s,h(xi))

• Return d̂ = 1
s − 1

10

-

Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions

• s1, s2, . . . , sk := 1

• For i = 1, . . . ,n

• s := min(s,h(xi))

• Return d̂ = 1
s − 1

10

-

Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions

• s1, s2, . . . , sk := 1

• For i = 1, . . . ,n

• For j=1,…,k, sj := min(sj,hj(xi))

• Return d̂ = 1
s − 1

10

Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions

• s1, s2, . . . , sk := 1

• For i = 1, . . . ,n
• For j=1,…,k, sj := min(sj,hj(xi))

• s := 1
k
∑k

j=1 sj

• Return d̂ = 1
s − 1

10

Improving Performance

Leverage the law of large numbers: improve accuracy via repeated
independent trials.

Hashing for Distinct Elements (Improved):

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions

• s1, s2, . . . , sk := 1

• For i = 1, . . . ,n
• For j=1,…,k, sj := min(sj,hj(xi))

• s := 1
k
∑k

j=1 sj

• Return d̂ = 1
s − 1

10

-

d=Y

- a - s , s

Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1

=⇒ E[s]

=
1

d+ 1
(linearity of expectation)

Var[sj] ≤
1

(d+ 1)2

=⇒ Var[s] ≤ 1
k · (d+ 1)2

(linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ εE[s]] ≤ Var[s]
(εE[s])2 =

E[s]2/k
ε2E[s]2 =

1
k · ε2 =

ε2 · δ
ε2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ε2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

11

- M s #
Bernstein?

-

- Vauls)¥§
vast'arnbisi)#kid's.gs#*,

Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1
=⇒ E[s]

=
1

d+ 1
(linearity of expectation)

Var[sj] ≤
1

(d+ 1)2

=⇒ Var[s] ≤ 1
k · (d+ 1)2

(linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ εE[s]] ≤ Var[s]
(εE[s])2 =

E[s]2/k
ε2E[s]2 =

1
k · ε2 =

ε2 · δ
ε2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ε2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

11

Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1
=⇒ E[s] = 1

d+ 1
(linearity of expectation)

Var[sj] ≤
1

(d+ 1)2

=⇒ Var[s] ≤ 1
k · (d+ 1)2

(linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ εE[s]] ≤ Var[s]
(εE[s])2 =

E[s]2/k
ε2E[s]2 =

1
k · ε2 =

ε2 · δ
ε2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ε2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

11

Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1
=⇒ E[s] = 1

d+ 1
(linearity of expectation)

Var[sj] ≤
1

(d+ 1)2
=⇒ Var[s]

≤ 1
k · (d+ 1)2

(linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ εE[s]] ≤ Var[s]
(εE[s])2 =

E[s]2/k
ε2E[s]2 =

1
k · ε2 =

ε2 · δ
ε2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ε2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

11

Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1
=⇒ E[s] = 1

d+ 1
(linearity of expectation)

Var[sj] ≤
1

(d+ 1)2
=⇒ Var[s] ≤ 1

k · (d+ 1)2
(linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ εE[s]] ≤ Var[s]
(εE[s])2 =

E[s]2/k
ε2E[s]2 =

1
k · ε2 =

ε2 · δ
ε2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ε2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

11

Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1
=⇒ E[s] = 1

d+ 1
(linearity of expectation)

Var[sj] ≤
1

(d+ 1)2
=⇒ Var[s] ≤ 1

k · (d+ 1)2
(linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ εE[s]] ≤ Var[s]
(εE[s])2

=
E[s]2/k
ε2E[s]2 =

1
k · ε2 =

ε2 · δ
ε2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ε2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

11

%

Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1
=⇒ E[s] = 1

d+ 1
(linearity of expectation)

Var[sj] ≤
1

(d+ 1)2
=⇒ Var[s] ≤ 1

k · (d+ 1)2
(linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ εE[s]] ≤ Var[s]
(εE[s])2 =

E[s]2/k
ε2E[s]2 =

1
k · ε2

=
ε2 · δ
ε2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ε2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

11

-
f , o o ,D

Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1
=⇒ E[s] = 1

d+ 1
(linearity of expectation)

Var[sj] ≤
1

(d+ 1)2
=⇒ Var[s] ≤ 1

k · (d+ 1)2
(linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ εE[s]] ≤ Var[s]
(εE[s])2 =

E[s]2/k
ε2E[s]2 =

1
k · ε2

=
ε2 · δ
ε2

= δ.

How should we set k if we want an error with probability at most δ?

k = 1
ε2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

11

i s
⇐a " t s K
y ,Pb E y

K s Ey -

Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1
=⇒ E[s] = 1

d+ 1
(linearity of expectation)

Var[sj] ≤
1

(d+ 1)2
=⇒ Var[s] ≤ 1

k · (d+ 1)2
(linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ εE[s]] ≤ Var[s]
(εE[s])2 =

E[s]2/k
ε2E[s]2 =

1
k · ε2

=
ε2 · δ
ε2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ε2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

11

Analysis

s = 1
k
∑k

j=1 sj. Have already shown that for j = 1, . . . , k:

E[sj] =
1

d+ 1
=⇒ E[s] = 1

d+ 1
(linearity of expectation)

Var[sj] ≤
1

(d+ 1)2
=⇒ Var[s] ≤ 1

k · (d+ 1)2
(linearity of variance)

Chebyshev Inequality:

Pr [|s− E[s]| ≥ εE[s]] ≤ Var[s]
(εE[s])2 =

E[s]2/k
ε2E[s]2 =

1
k · ε2 =

ε2 · δ
ε2

= δ.

How should we set k if we want an error with probability at most δ?
k = 1

ε2·δ .

sj : minimum of d distinct hashes chosen randomly over [0, 1]. s = 1
k
∑k

j=1 sj .
d̂ = 1

s − 1: estimate of # distinct elements d.

11

⇐

Space Complexity

Hashing for Distinct Elements:

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions
• s1, s2, . . . , sk := 1

• For i = 1, . . . ,n
• For j=1,…, k, sj := min(sj,hj(xi))

• s := 1
k
∑k

j=1 sj
• Return d̂ = 1

s − 1

• Setting k = 1
ε2·δ , algorithm returns d̂ with |d− d̂| ≤ 4ε · d with

probability at least 1− δ.

• Space complexity is k = 1
ε2·δ real numbers s1, . . . , sk.

• δ = 5% failure rate gives a factor 20 overhead in space
complexity.

12

L
- -

I s - I t s1 s e e s

Space Complexity

Hashing for Distinct Elements:

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions
• s1, s2, . . . , sk := 1

• For i = 1, . . . ,n
• For j=1,…, k, sj := min(sj,hj(xi))

• s := 1
k
∑k

j=1 sj
• Return d̂ = 1

s − 1

• Setting k = 1
ε2·δ , algorithm returns d̂ with |d− d̂| ≤ 4ε · d with

probability at least 1− δ.

• Space complexity is k = 1
ε2·δ real numbers s1, . . . , sk.

• δ = 5% failure rate gives a factor 20 overhead in space
complexity.

12

-

Space Complexity

Hashing for Distinct Elements:

• Let h1,h2, . . . ,hk : U → [0, 1] be random hash functions
• s1, s2, . . . , sk := 1

• For i = 1, . . . ,n
• For j=1,…, k, sj := min(sj,hj(xi))

• s := 1
k
∑k

j=1 sj
• Return d̂ = 1

s − 1

• Setting k = 1
ε2·δ , algorithm returns d̂ with |d− d̂| ≤ 4ε · d with

probability at least 1− δ.

• Space complexity is k = 1
ε2·δ real numbers s1, . . . , sk.

• δ = 5% failure rate gives a factor 20 overhead in space
complexity. 12

:p

j s .
0001

¥520

-

Improved Failure Rate

How can we improve our dependence on the failure rate δ?

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ε2 =
5
ε2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• If > 1/2 of trials fall in [(1− 4ε)d, (1+ 4ε)d], then the median
will.

• Have < 1/2 of trials on both the left and right.

13

£#D¥#rs's.

Improved Failure Rate

How can we improve our dependence on the failure rate δ?

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ε2 =
5
ε2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• If > 1/2 of trials fall in [(1− 4ε)d, (1+ 4ε)d], then the median
will.

• Have < 1/2 of trials on both the left and right.

13

- -

Improved Failure Rate

How can we improve our dependence on the failure rate δ?

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ε2 =
5
ε2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• If > 1/2 of trials fall in [(1− 4ε)d, (1+ 4ε)d], then the median
will.

• Have < 1/2 of trials on both the left and right.

13

- ,
good with a t least t o% prob,

-

Improved Failure Rate

How can we improve our dependence on the failure rate δ?

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ε2 =
5
ε2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• If > 1/2 of trials fall in [(1− 4ε)d, (1+ 4ε)d], then the median
will.

• Have < 1/2 of trials on both the left and right.

13

- -

- - 8 0 %
5 0 % - 5 0 %
- & -

Improved Failure Rate

How can we improve our dependence on the failure rate δ?

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ε2 =
5
ε2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• If > 1/2 of trials fall in [(1− 4ε)d, (1+ 4ε)d], then the median
will.

• Have < 1/2 of trials on both the left and right.

13

< " z fob 71/2

-

Improved Failure Rate

How can we improve our dependence on the failure rate δ?

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ε2 =
5
ε2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• If > 1/2 of trials fall in [(1− 4ε)d, (1+ 4ε)d], then the median
will.

• Have < 1/2 of trials on both the left and right.
13

Improved Failure Rate

How can we improve our dependence on the failure rate δ?

The median trick: Run t = O(log 1/δ) trials each with failure
probability δ′ = 1/5 – each using k = 1

δ′ε2 =
5
ε2 hash functions.

• Letting d̂1, . . . , d̂t be the outcomes of the t trials, return
d̂ = median(d̂1, . . . , d̂t).

• If > 2/3 of trials fall in [(1− 4ε)d, (1+ 4ε)d], then the median
will.

• Have < 1/3 of trials on both the left and right.
13

8093
0

g
-

The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ε)d, (1+ 4ε)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ε)d, (1+ 4ε)d]?

• Let X be the # of trials falling in [(1− 4ε)d, (1+ 4ε)d].

E[X] = 4
5 · t.

Pr
(
d̂ /∈ [(1− 4ε)d, (1+ 4ε)d]

)
≤ Pr

(
X <

2
3
· t
)

≤ Pr

(
|X− E[X]| ≥ 1

6
E[X]

)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6
E[X]

)
≤ 2 exp

(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

14

The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ε)d, (1+ 4ε)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ε)d, (1+ 4ε)d]?

• Let X be the # of trials falling in [(1− 4ε)d, (1+ 4ε)d].

E[X] = 4
5 · t.

Pr
(
d̂ /∈ [(1− 4ε)d, (1+ 4ε)d]

)
≤ Pr

(
X <

2
3
· t
)

≤ Pr

(
|X− E[X]| ≥ 1

6
E[X]

)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6
E[X]

)
≤ 2 exp

(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

14

-

The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ε)d, (1+ 4ε)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ε)d, (1+ 4ε)d]?

• Let X be the # of trials falling in [(1− 4ε)d, (1+ 4ε)d].

E[X] = 4
5 · t.

Pr
(
d̂ /∈ [(1− 4ε)d, (1+ 4ε)d]

)
≤ Pr

(
X <

2
3
· t
)

≤ Pr

(
|X− E[X]| ≥ 1

6
E[X]

)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6
E[X]

)
≤ 2 exp

(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

14

- .

The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ε)d, (1+ 4ε)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ε)d, (1+ 4ε)d]?

• Let X be the # of trials falling in [(1− 4ε)d, (1+ 4ε)d].
E[X] =

4
5 · t.

Pr
(
d̂ /∈ [(1− 4ε)d, (1+ 4ε)d]

)
≤ Pr

(
X <

2
3
· t
)

≤ Pr

(
|X− E[X]| ≥ 1

6
E[X]

)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6
E[X]

)
≤ 2 exp

(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

14

- I t

The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ε)d, (1+ 4ε)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ε)d, (1+ 4ε)d]?

• Let X be the # of trials falling in [(1− 4ε)d, (1+ 4ε)d].
E[X] = 4

5 · t.

Pr
(
d̂ /∈ [(1− 4ε)d, (1+ 4ε)d]

)
≤ Pr

(
X <

2
3
· t
)

≤ Pr

(
|X− E[X]| ≥ 1

6
E[X]

)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6
E[X]

)
≤ 2 exp

(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

14

The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ε)d, (1+ 4ε)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ε)d, (1+ 4ε)d]?

• Let X be the # of trials falling in [(1− 4ε)d, (1+ 4ε)d].
E[X] = 4

5 · t.

Pr
(
d̂ /∈ [(1− 4ε)d, (1+ 4ε)d]

)
≤ Pr

(
X <

5
6
· E[X]

)

≤ Pr

(
|X− E[X]| ≥ 1

6
E[X]

)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6
E[X]

)
≤ 2 exp

(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

14

-
S g t :§ .f .t : §#X

The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ε)d, (1+ 4ε)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ε)d, (1+ 4ε)d]?

• Let X be the # of trials falling in [(1− 4ε)d, (1+ 4ε)d].
E[X] = 4

5 · t.

Pr
(
d̂ /∈ [(1− 4ε)d, (1+ 4ε)d]

)
≤ Pr

(
X <

5
6
· E[X]

)
≤ Pr

(
|X− E[X]| ≥ 1

6
E[X]

)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6
E[X]

)
≤ 2 exp

(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

14

•

The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ε)d, (1+ 4ε)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ε)d, (1+ 4ε)d]?

• Let X be the # of trials falling in [(1− 4ε)d, (1+ 4ε)d].
E[X] = 4

5 · t.

Pr
(
d̂ /∈ [(1− 4ε)d, (1+ 4ε)d]

)
≤ Pr

(
X <

5
6
· E[X]

)
≤ Pr

(
|X− E[X]| ≥ 1

6
E[X]

)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6
E[X]

)
≤ 2 exp

(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

14

The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ε)d, (1+ 4ε)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ε)d, (1+ 4ε)d]?

• Let X be the # of trials falling in [(1− 4ε)d, (1+ 4ε)d].
E[X] = 4

5 · t.

Pr
(
d̂ /∈ [(1− 4ε)d, (1+ 4ε)d]

)
≤ Pr

(
X <

5
6
· E[X]

)
≤ Pr

(
|X− E[X]| ≥ 1

6
E[X]

)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6
E[X]

)
≤ 2 exp

(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ.

14

Xi : I i f Idid144
T o otherwk.

- ± -

The Median Trick

• d̂1, . . . , d̂t are the outcomes of the t trials, each falling in
[(1− 4ε)d, (1+ 4ε)d] with probability at least 4/5.

• d̂ = median(d̂1, . . . , d̂t).

What is the probability that the median d̂ falls in
[(1− 4ε)d, (1+ 4ε)d]?

• Let X be the # of trials falling in [(1− 4ε)d, (1+ 4ε)d].
E[X] = 4

5 · t.

Pr
(
d̂ /∈ [(1− 4ε)d, (1+ 4ε)d]

)
≤ Pr

(
X <

5
6
· E[X]

)
≤ Pr

(
|X− E[X]| ≥ 1

6
E[X]

)

Apply Chernoff bound:

Pr

(
|X− E[X]| ≥ 1

6
E[X]

)
≤ 2 exp

(
−

1
6
2 · 4

5 t
2+ 1/6

)
= O

(
e−ct) .

• Setting t = O(log(1/δ)) gives failure probability e− log(1/δ) = δ. 14

e-'D"'%$8

- -

Median Trick

Upshot: The median of t = O(log(1/δ)) independent runs of
the hashing algorithm for distinct elements returns
d̂ ∈ [(1− 4ε)d, (1+ 4ε)d] with probability at least 1− δ.

Total Space Complexity: t trials, each using k = 1
ε2δ′

hash
functions, for δ′ = 1/5. Space is 5t

ε2
= O

(
log(1/δ)

ε2

)
real numbers

(the minimum value of each hash function).

No dependence on the number of distinct elements d or the
number of items in the stream n! Both of these numbers are
typically very large.

A note on the median: The median is often used as a robust
alternative to the mean, when there are outliers (e.g., heavy
tailed distributions, corrupted data).

15

Median Trick

Upshot: The median of t = O(log(1/δ)) independent runs of
the hashing algorithm for distinct elements returns
d̂ ∈ [(1− 4ε)d, (1+ 4ε)d] with probability at least 1− δ.

Total Space Complexity: t trials, each using k = 1
ε2δ′

hash
functions, for δ′ = 1/5. Space is 5t

ε2
= O

(
log(1/δ)

ε2

)
real numbers

(the minimum value of each hash function).

No dependence on the number of distinct elements d or the
number of items in the stream n! Both of these numbers are
typically very large.

A note on the median: The median is often used as a robust
alternative to the mean, when there are outliers (e.g., heavy
tailed distributions, corrupted data).

15

=

Median Trick

Upshot: The median of t = O(log(1/δ)) independent runs of
the hashing algorithm for distinct elements returns
d̂ ∈ [(1− 4ε)d, (1+ 4ε)d] with probability at least 1− δ.

Total Space Complexity: t trials, each using k = 1
ε2δ′

hash
functions, for δ′ = 1/5. Space is 5t

ε2
= O

(
log(1/δ)

ε2

)
real numbers

(the minimum value of each hash function).

No dependence on the number of distinct elements d or the
number of items in the stream n! Both of these numbers are
typically very large.

A note on the median: The median is often used as a robust
alternative to the mean, when there are outliers (e.g., heavy
tailed distributions, corrupted data).

15

Median Trick

Upshot: The median of t = O(log(1/δ)) independent runs of
the hashing algorithm for distinct elements returns
d̂ ∈ [(1− 4ε)d, (1+ 4ε)d] with probability at least 1− δ.

Total Space Complexity: t trials, each using k = 1
ε2δ′

hash
functions, for δ′ = 1/5. Space is 5t

ε2
= O

(
log(1/δ)

ε2

)
real numbers

(the minimum value of each hash function).

No dependence on the number of distinct elements d or the
number of items in the stream n! Both of these numbers are
typically very large.

A note on the median: The median is often used as a robust
alternative to the mean, when there are outliers (e.g., heavy
tailed distributions, corrupted data).

15

l
,

