COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 7

Summary

Last Class:

- Finish up exponential concentration bounds. Application to max load in hashing/load balancing.
- Bloom filters for storing a set with a small false positive rate.

This Class:

- Bloom Filter Analysis.
- Start on streaming algorithms
- The distinct items problem via random hashing.

Quiz

- Average time spent on homework: 18-20 hours.
- 18 people worked alone, 103 worked in groups. Mix of approaches to splitting up work in groups.
\mathbf{X} is the sum of independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$, each with mean μ_{i} and variance σ_{i}. Each \mathbf{X}_{i} takes on values in the range $[-5,5]$.

Which of the following concentration bounds can you apply to show that \mathbf{X} lies close to its expectation with good probability? Check all that apply.

Select one or more:

\square a. Markov's inquality.
\square b. Chebyshev's inequality
\square c. Bernstein's inequality.
\square d. Chernoff bound.

Check

Bloom Filters

Chose k independent random hash functions h_{1}, \ldots, h_{k} mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[h_{1}(x)\right]=\ldots=A\left[h_{k}(x)\right]=1$.

No false negatives. False positives more likely with more insertions.

Applications: Caching

Akamai (Boston-based company serving $15-30 \%$ of all web traffic) applies bloom filters to prevent caching of ‘one-hit-wonders' - pages only visited once fill over 75% of cache.

- When url x comes in, if query $(x)=1$, cache the page at x. If not, run insert(x) so that if it comes in again, it will be cached.
- False positive: A new url (possible one-hit-wonder) is cached. If the bloom filter has a false positive rate of $\delta=.05$, the number of cached one-hit-wonders will be reduced by at least 95\%.

Applications: Databases

Distributed database systems, including Google Bigtable, Apache HBase, Apache Cassandra, and PostgreSQL use bloom filters to prevent expensive lookups of non-existent data.

Movies

- When a new rating is inserted for (user ${ }_{x}$, movie $_{y}$), add (user x, movie $_{y}$) to a bloom filter.
- Before reading (user x, moviey $_{y}$) (possibly via an out of memory access), check the bloom filter, which is stored in memory.
- False positive: A read is made to a possibly empty cell. A $\delta=.05$ false positive rate gives a 95% reduction in these empty reads.

More Applications

- Database Joins: Quickly eliminate most keys in one column that don't correspond to keys in another.
- Recommendation systems: Bloom filters are used to prevent showing users the same recommendations twice.
- Spam/Fraud Detection:
- Bit.ly and Google Chrome use bloom filters to quickly check if a url maps to a flagged site and prevent a user from following it.
- Can be used to detect repeat clicks on the same ad from a single IP-address, which may be the result of fraud.
- Digital Currency: Some Bitcoin clients use bloom filters to quickly pare down the full transaction log to transactions involving bitcoin addresses that are relevant to them (SPV: simplified payment verification).

Bloom Filter Quiz Question

Consider a bloom filter where exactly $1 / 2$ of the bits in the filter are set to 1 , and the rest are set to 0 . Consider running query (w) for some w that has not been inserted into the filter. If my implementation uses k independent, fully random hash functions, for $k=2$, what is the probability at query (w) yields a false positive? Give your answer as an exact decimal number.

Answer: \square
Check

Analysis

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ? $n \times k$ total hashes must not hit bit i.

$$
\begin{aligned}
\operatorname{Pr}(A[i]=0) & =\operatorname{Pr}\left(h_{1}\left(x_{1}\right) \neq i \cap \ldots \cap h_{k}\left(x_{k}\right) \neq i\right. \\
& \left.\cap h_{1}\left(x_{2}\right) \neq i \ldots \cap h_{k}\left(x_{2}\right) \neq i \cap \ldots\right) \\
& =\underbrace{\operatorname{Pr}\left(h_{1}\left(x_{1}\right) \neq i\right) \times \ldots \times \operatorname{Pr}\left(h_{k}\left(x_{1}\right) \neq i\right) \times \operatorname{Pr}\left(h_{1}\left(x_{2}\right) \neq i\right) \ldots}_{k \cdot n \text { events each occurring with probability } 1-1 / m} \\
& =\left(1-\frac{1}{m}\right)^{k n}
\end{aligned}
$$

Analysis

How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\operatorname{Pr}(A[i]=0)=\left(1-\frac{1}{m}\right)^{k n} \approx e^{-\frac{k n}{m}}
$$

Step 2: What is the probability that querying a new item w gives a false positive?

$$
\begin{aligned}
\operatorname{Pr}\left(A\left[h_{1}(w)\right]\right. & \left.=\ldots=A\left[h_{k}(w)\right]=1\right) \\
& =\operatorname{Pr}\left(A\left[h_{1}(w)\right]=1\right) \times \ldots \times \operatorname{Pr}\left(A\left[h_{k}(w)\right]=1\right) \\
& =\left(1-e^{-\frac{k n}{m}}\right)^{k} \quad \text { Actually Incorrect! Dependent events. }
\end{aligned}
$$

n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $h_{1}, \ldots h_{k}$: hash functions, A : bit array, δ : false positive rate.

Correct Analysis Sketch

Step 1: To avoid dependence issues, condition on the event that the A has t zeros in it after n insertions, for some $t \leq m$. For a non-inserted element w, after conditioning on this event we correctly have:

$$
\begin{aligned}
\operatorname{Pr}\left(A\left[h_{1}(w)\right]\right. & \left.=\ldots=A\left[h_{k}(w)\right]=1\right) \\
& =\operatorname{Pr}\left(A\left[h_{1}(w)\right]=1\right) \times \ldots \times \operatorname{Pr}\left(A\left[h_{k}(w)\right]=1\right) .
\end{aligned}
$$

I.e., the events $A\left[h_{1}(w)\right]=1, \ldots, A\left[h_{k}(w)\right]=1$ are independent conditioned on the number of bits set in A. Why?

- Conditioned on this event, for any j, since h_{j} is a fully random hash function, $\operatorname{Pr}\left(A\left[h_{j}(w)\right]=1\right)=1-\frac{t}{m}$.
- Thus conditioned on this event, the false positive rate is $\left(1-\frac{t}{m}\right)^{k}$.
- It remains to show that $\frac{t}{m} \approx e^{-\frac{k n}{m}}$ with high probability. We already have that $\mathbb{E}\left[\frac{t}{m}\right]=\frac{1}{m} \sum_{i=1}^{m} \operatorname{Pr}(A[i]=0) \approx e^{-\frac{k n}{m}}$.

Correct Analysis Sketch

Need to show that the number of zeros t in A after n insertions is bounded by $O\left(e^{-\frac{-n g}{m}}\right)$ with high probability.
Can apply Theorem 2 of:
http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf

False Positive Rate

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx\left(1-e^{\frac{-k n}{m}}\right)^{k}$. How should we set k to minimize the FPR given a fixed amount of space m ?

- Can differentiate to show optimal number of hashes is $k=\ln 2 \cdot \frac{m}{n}$.
- Balances filling up the array vs. having enough hashes so that even when the array is pretty full, a new item is unlikely to yield a false positive.

False Positive Rate

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx\left(1-e^{\frac{-k n}{m}}\right)^{k}$.

Movies

- Say we have 100 million users, each who have rated 10 movies.
- $n=10^{9}=n$ (user,movie) pairs with non-empty ratings.
- Allocate $m=8 n=8 \times 10^{9}$ bits for a Bloom filter (1 GB).
- Set $k=\ln 2 \cdot \frac{m}{n}=5.54 \approx 6$.
- False positive rate is $\approx\left(1-e^{-k \cdot \frac{n}{m}}\right)^{k} \approx \frac{1}{2^{k}} \approx \frac{1}{2^{5.54}}=.021$.

Bloom Filter Note

An observation about Bloom filter space complexity:

$$
\text { False Positive Rate: } \delta \approx\left(1-e^{-\frac{k n}{m}}\right)^{k} \text {. }
$$

For an m-bit bloom filter holding n items, optimal number of hash functions k is: $k=\ln 2 \cdot \frac{m}{n}$.

Think Pair Share: If we want a false positive rate $<\frac{1}{2}$ how big does m need to be in comparison to n ?

$$
m=O(\log n), m=O(\sqrt{n}), m=O(n), m=O\left(n^{2}\right) ?
$$

If $m=\frac{n}{\ln 2}$, optimal $k=1$, and failure rate is:

$$
\delta=\left(1-e^{-\frac{n / \ln 2}{n}}\right)^{1}=\left(1-\frac{1}{2}\right)^{1}=\frac{1}{2}
$$

l.e., storing n items in a bloom filter requires $O(n)$ space. So what's the point? Truly $O(n)$ bits, rather than $O(n$. item size).

Questions on Bloom Filters?

