COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2023. Lecture 7

Last Class:

- Finish up exponential concentration bounds. Application to max load in hashing/load balancing.
- Bloom filters for storing a set with a small false positive rate.

This Class:

- Bloom Filter Analysis.
- Start on streaming algorithms
- The distinct items problem via random hashing.

Quiz

- Average time spent on homework: 18-20 hours.
- 18 people worked alone, 103 worked in groups. Mix of approaches to splitting up work in groups.

X is the sum of independent random variables $\mathbf{X}_1, \ldots, \mathbf{X}_n$, each with mean μ_i and variance σ_i . Each \mathbf{X}_i takes on values in the range [-5, 5].

Which of the following concentration bounds can you apply to show that **X** lies close to its expectation with good probability? Check all that apply.

Select one or more:

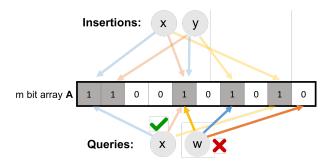
- a. Markov's inquality.
- b. Chebyshev's inequality
- c. Bernstein's inequality.
- d. Chernoff bound.

Check

Bloom Filters

Chose k independent random hash functions $\mathbf{h}_1, \dots, \mathbf{h}_k$ mapping the universe of elements $U \to [m]$.

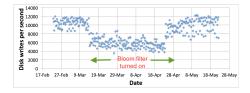
- Maintain an array A containing *m* bits, all initially 0.
- insert(x): set all bits $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] := 1.$
- query(x): return 1 only if $A[\mathbf{h}_1(x)] = \ldots = A[\mathbf{h}_k(x)] = 1$.



No false negatives. False positives more likely with more insertions.

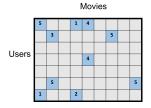
Applications: Caching

Akamai (Boston-based company serving 15 – 30% of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' – pages only visited once fill over 75% of cache.



- When url x comes in, if query(x) = 1, cache the page at x. If not, run *insert*(x) so that if it comes in again, it will be cached.
- False positive: A new url (possible one-hit-wonder) is cached. If the bloom filter has a false positive rate of $\delta = .05$, the number of cached one-hit-wonders will be reduced by at least 95%.

Distributed database systems, including Google Bigtable, Apache HBase, Apache Cassandra, and PostgreSQL use bloom filters to prevent expensive lookups of non-existent data.



 When a new rating is inserted for (user_x, movie_y), add (user_x, movie_y) to a bloom filter.

- Before reading (*user_x*, *movie_y*) (possibly via an out of memory access), check the bloom filter, which is stored in memory.
- False positive: A read is made to a possibly empty cell. A $\delta = .05$ false positive rate gives a 95% reduction in these empty reads.

More Applications

- **Database Joins:** Quickly eliminate most keys in one column that don't correspond to keys in another.
- **Recommendation systems:** Bloom filters are used to prevent showing users the same recommendations twice.
- Spam/Fraud Detection:
 - Bit.ly and Google Chrome use bloom filters to quickly check if a url maps to a flagged site and prevent a user from following it.
 - Can be used to detect repeat clicks on the same ad from a single IP-address, which may be the result of fraud.
- **Digital Currency:** Some Bitcoin clients use bloom filters to quickly pare down the full transaction log to transactions involving bitcoin addresses that are relevant to them (SPV: simplified payment verification).

Consider a bloom filter where exactly 1/2 of the bits in the filter are set to 1, and the rest are set to 0. Consider running query(w) for some w that has not been inserted into the filter. If my implementation uses k independent, fully random hash functions, for k = 2, what is the probability at query(w) yields a false positive? Give your answer as an exact decimal number.

Answer:	
Check	

Analysis

For a bloom filter with *m* bits and *k* hash functions, the insertion and query time is O(k). How does the false positive rate δ depend on *m*, *k*, and the number of items inserted?

Step 1: What is the probability that after inserting *n* elements, the *i*th bit of the array A is still 0? $n \times k$ total hashes must not hit bit *i*.

$$Pr(A[i] = 0) = Pr(h_1(x_1) \neq i \cap \ldots \cap h_k(x_k) \neq i$$

$$\cap h_1(x_2) \neq i \dots \cap h_k(x_2) \neq i \cap \dots)$$

$$= \underbrace{Pr(h_1(x_1) \neq i) \times \ldots \times Pr(h_k(x_1) \neq i) \times Pr(h_1(x_2) \neq i) \dots}$$

 $k \cdot n$ events each occuring with probability 1 - 1/m

$$=\left(1-\frac{1}{m}\right)^{kn}$$

Analysis

How does the false positive rate δ depend on *m*, *k*, and the number of items inserted?

Step 1: What is the probability that after inserting *n* elements, the *i*th bit of the array A is still 0?

$$\Pr(A[i] = 0) = \left(1 - \frac{1}{m}\right)^{kn} \approx e^{-\frac{kn}{m}}$$

Step 2: What is the probability that querying a new item *w* gives a false positive?

$$\begin{aligned} \Pr\left(A[\mathbf{h}_1(w)] &= \dots = A[\mathbf{h}_k(w)] = 1\right) \\ &= \Pr(A[\mathbf{h}_1(w)] = 1) \times \dots \times \Pr(A[\mathbf{h}_k(w)] = 1) \\ &= \left(1 - e^{-\frac{kn}{m}}\right)^k \quad \text{Actually Incorrect! Dependent events.} \end{aligned}$$

n: total number items in filter, *m*: number of bits in filter, *k*: number of random hash functions, h_1, \ldots, h_k : hash functions, *A*: bit array, δ : false positive rate.

Correct Analysis Sketch

Step 1: To avoid dependence issues, condition on the event that the *A* has *t* zeros in it after *n* insertions, for some $t \le m$. For a non-inserted element *w*, after conditioning on this event we correctly have:

$$Pr(A[\mathbf{h}_1(w)] = \dots = A[\mathbf{h}_k(w)] = 1)$$

=
$$Pr(A[\mathbf{h}_1(w)] = 1) \times \dots \times Pr(A[\mathbf{h}_k(w)] = 1).$$

I.e., the events $A[\mathbf{h}_1(w)] = 1,..., A[\mathbf{h}_k(w)] = 1$ are independent conditioned on the number of bits set in A. Why?

- Conditioned on this event, for any *j*, since \mathbf{h}_j is a fully random hash function, $\Pr(A[\mathbf{h}_j(w)] = 1) = 1 \frac{t}{m}$.
- Thus conditioned on this event, the false positive rate is $(1 \frac{t}{m})^k$.
- It remains to show that $\frac{t}{m} \approx e^{-\frac{kn}{m}}$ with high probability. We already have that $\mathbb{E}[\frac{t}{m}] = \frac{1}{m} \sum_{i=1}^{m} \Pr(A[i] = 0) \approx e^{-\frac{kn}{m}}$.

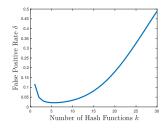
Need to show that the number of zeros t in A after n insertions is bounded by $O\left(e^{-\frac{kn}{m}}\right)$ with high probability.

Can apply Theorem 2 of:

http://cglab.ca/~morin/publications/ds/bloom-submitted.pdf

False Positive Rate

False Positive Rate: with *m* bits of storage, *k* hash functions, and *n* items inserted $\delta \approx \left(1 - e^{\frac{-kn}{m}}\right)^k$. How should we set *k* to minimize the FPR given a fixed amount of space *m*?

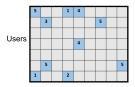


- Can differentiate to show optimal number of hashes is $k = \ln 2 \cdot \frac{m}{n}$.
- Balances filling up the array vs. having enough hashes so that even when the array is pretty full, a new item is unlikely to yield a false positive.

False Positive Rate

False Positive Rate: with *m* bits of storage, *k* hash functions, and *n* items inserted $\delta \approx \left(1 - e^{\frac{-kn}{m}}\right)^k$.

Movies



- Say we have 100 million users, each who have rated 10 movies.
- $n = 10^9 = n$ (user, movie) pairs with non-empty ratings.
- Allocate $m = 8n = 8 \times 10^9$ bits for a Bloom filter (1 GB).
- Set $k = \ln 2 \cdot \frac{m}{n} = 5.54 \approx 6$.
- False positive rate is $\approx (1 e^{-k \cdot \frac{n}{m}})^k \approx \frac{1}{2^{k}} \approx \frac{1}{2^{5.54}} = .021.$

An observation about Bloom filter space complexity:

False Positive Rate:
$$\delta \approx \left(1 - e^{-\frac{kn}{m}}\right)^k$$

For an *m*-bit bloom filter holding *n* items, optimal number of hash functions *k* is: $k = \ln 2 \cdot \frac{m}{n}$.

Think Pair Share: If we want a false positive rate $<\frac{1}{2}$ how big does *m* need to be in comparison to *n*?

$$m = O(\log n), \ m = O(\sqrt{n}), \ m = O(n^2), \ m = O(n^2)$$

If $m = \frac{n}{\ln 2}$, optimal k = 1, and failure rate is:

$$\delta = \left(1 - e^{-\frac{n/\ln 2}{n}}\right)^1 = \left(1 - \frac{1}{2}\right)^1 = \frac{1}{2}.$$

I.e., storing *n* items in a bloom filter requires O(n) space. So what's the point? Truly O(n) bits, rather than $O(n \cdot \text{item size})$.

Questions on Bloom Filters?