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- Problem Set 1 due next Friday 9/22, at 11:59pm.

- Second quiz will be released today after class, due
Monday 8:00pm.



Last Class:

- 2-level hashing and its analysis via linearity of expectation.
Gives optimal O(1) query time and O(m) expected space usage.

- Practical random hash functions: 2-universal and pairwise
independent hashing.

This Time:

- Hashing for load balancing in distributed systems. Motivating:
- Stronger concentration inequalities: Chebyshev's
inequality, exponential tail bounds, and their connections
to the law of large numbers and central limit theorem.
- The union bound to bound the probability that one of
multiple possible correlated events happens.

- Some of the pset questions use Chebyshev’s inequality. After
today you will know enough to solve everything on the pset.



Efficiently Computable Hash Functions
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2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

1

Prih(x) = h(y)] < —.

Pairwise Independent Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i,j € [n]:

Prih(x) = inh(y) =] = .




Another Application

Randomized Load Balancing:
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Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

- Often assignment is done via a random hash function. Why?



Weakness of Markov’s

n n
o n
E[R]] = ZE[Hrequestjassigned toi] = Z Prj assigned to i] = R
j=1 j=1
If we provision each server be able to handle twice the
expected load, what is the probability that a server is

overloaded?

Applying Markov’s Inequality

PriR > 2E[R]] < 21%[1]] i

Not great..half the servers may be overloaded.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.




Chebyshev's inequality

With a very simple twist, Markov's inequality can be made
much more powerful.

For any random variable X and any value t > 0:
Pr(|X| > t) = Pr(X? > t?).
X? is a nonnegative random variable. So can apply Markov's
inequality:

Chebyshev's inequality:

E[X?] Var[X]

Pr(X — EPRA(X)> £) = Pr(X* > ') < =5=

(by plugging in the random variable X — E[X])



Chebyshev's inequality

Var[X]
Pr(X—EX]| > t) <~
What is the probability that X falls s standard deviations from it's
mean?
Var([X] 1
Pr(X—E[X]| >s-+vVar[X]) < ——F+—= = —.
(X~ BB 2 s Varli]) < G e =
X: any random variable, t, s: any fixed numbers. ]




Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean p and variance o2.

How well does the sample average S = %ZL X; approximate the
true mean u?
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By Chebyshev's Inequality: for any fixed value e > 0,

Var[S]  o?
- >e)< a2l 9
Pr(|S—E[S]u| > ¢€) < 2 Y

Var[S] = Var

Law of Large Numbers: with enough samples n, the sample average
will always concentrate to the mean.

- Cannot show from vanilla Markov’'s inequality.



Load Balancing Variance

We can write the number of requests assigned to server i, R; as:
n n
R = Z RijVar[R] = Var[R; ] (linearity of variance)
j=1 j=1
where R;; is 1if request j is assigned to server i and 0 otherwise.
2
Var[R;j] = E [(Rw‘ —E[R;)]) }

=Pr(R; =1)- (1-E[R;,])’ +Pr(R;; = 0)- (0 — E[R;;])’

] 1—1 2-‘1- 1—1 0—1 2
TR k k k
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n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.
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Bounding the Load via Chebyshevs

Letting R; be the number of requests sent to server i, E[Rj] = # and
Var[R] < ¢.
Applying Chebyshev’s:

2n n n/k k
Pr <Ri 2 k> < Pr <|RI*E[Ri]| 2 E) < W =

- Overload probability is extremely small when k < n!
- Might seem counterintuitive - bound gets worse as k grows.

- When kis large, the number of requests each server sees in
expectation is very small so the law of large numbers doesn’t
‘kick in’.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

n



Maximum Server Load

What is the probability that the maximum server load exceeds
2-E[R]] = 2. le, that some server is overloaded if we give
each 2! capacity?

2N 2N 2n 2n
Pr <ml_ax(R,-) > k) = Pr([R1 > k} U {Rz > /?} U...u {Rk > /?]) = Pr

We want to show that Pr (UL R > Zﬂ) is small.

How do we do this? Note that Ry, ..., R, are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[Rj] = #. Var[Rj] = {.
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The Union Bound

Union Bound: For any random events A, A, ..., A,

PF(A1 UA, U...UAk) < PF(A1)+ Pr(Az) ++Pr(A,?)

When is the union bound tight? When A, ..., A, are all disjoint.
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Applying the Union Bound

What is the probability that the maximum server load exceeds
2-E[R] = 2. l.e, that some server is overloaded if we give each 2
capacity?

Pr <[R,~ > MD (Union Bound)

k
= (Bound from Chebyshev's)

As long as k < O(y/n), with good probability, the maximum server
load will be small (compared to the expected load).

n: total number of requests, k: number of servers randomly assigned requests,

R;: number of requests assigned to server i. E[Rj] = #. Var[Rj] = f. »




