COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2023.
Lecture 3

- Problem Set 1 has been posted on the course website and is
due Friday 9/22 at 11:59pm.

- On the quiz feedback question, several people mentioned
concerns about linear algebra background. The good news is
you have some time - we will do essentially no linear algebra
before the midterm. See resources on Lecture 15 for review
material to get started on.

- For probability/problem solving practice beyond the
quizzes/pset | highly recommend looking at the exercises in
—> Foundations of Data Science and Probability and Computing.
Feel free to ask for solutions to these on Piazza.

- It is common to not catch everything in lecture. | strongly
encourage going back to the slides to review/check your
understanding after class. Also come to office hours for more
in-depth discussion/examples.

Content Overview

Last Class: \/o\/\(,x)’]/> B \/M(XB {'\/M\\)
Einearity of variance.)

- Markov's inequality: the most fundamental concentration
bound. Pr(X > t- E[X]) < 1/t.
- Algorithmic applications of Markov's inequality, linearity of
expectation, and indicator random variables:
- Counting collisions to estimate CAPTCHA database size.
- Start on analyzing hash tables with random hash functions.
- Collisions free hashing using a table with O(m?) slots to
store m items.

Content Overview

Today:

- Finish up random hash functions and hash tables.

- 2-level hashing, 2-universal and pairwise independent
—
hash functions.

- Application of random hashing to distributed load
balancing.

- Through this application learn about Chebyshev's
inequality, which strengthens Markov's inequality (maybe
not until next class).

B —
>

Quiz Questions

/

Question 4
The expected number of inches of rain on

Not complete

Points out of 1.00

expected number of inches-an Sunday is 2. [There is a 50% chance of
rain on Saturday. If it rains on Saturday, thete is a 75% chance of rain on

Sunday. If it does not rain on Saturday, there is only a 25% chance of
rain on Sundayévyit is the expected number of inches of rainfall total

¥ Flag question

% Edit question

ver the weekend?

Answer:

Check

K= s S
\‘)) {ft \/\(\/vj OY\ SVV\

Elxr) ~E) S

We store m items from a large universe in a hash table with n
positions.

128-bit IP addresses Hash Table O

172.16.254.1

=

2

7\ \%
: '~1
5 >
2 —
‘% \\}
“\ \"

v

B3
B WN P

ol

+

[

«

—C

192.168.1.34

16.58.26.164

- Want to show that when h : U — [n] is a fully random hash
function, query time is O(1) with good probability.

- Equivalently: want to show that there are few collisions
between hashed items.

Collision Free Hashing

i3
letC= Z,-Je[m“ifcu be the number of pairwise collisions between
|tems. —_—

'X& _) 0 E[C] = w (via the Captcha analysis)

_—Pa“"n—

- For n = 4m? we have: E[C] = 201 < 1.

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

Collision Free Hashing

X

Let C= 3" je(m),i<j Cij e the number of pairwise collisions between
items.

E[C] = w (via the Captcha analysis)

- For n = 4m? we have: E[C] = mgfg” <3

Apply Markov's Inequality: Pr[C > 1] < E[q <5

-

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

Collision Free Hashing

Let C= 3" je(m),i<j Cij e the number of pairwise collisions between

items.
mim—=1) . :
E[C] = ETEE (via the Captcha analysis)
. —1
- For n = 4m? we have: E[C] = 201 < 1.
? . E[C
Apply Markov's Inequality: Pr[C > 1] < % = 3.

1 7
PC=0]=1—-PrlC>1>1—- ==
fC=0=1-PlC>1 21— =2

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

Collision Free Hashing

Let C= 3" je(m),i<j Cij e the number of pairwise collisions between
items.

m(m —1) (

o via the Captcha analysis)

E[C] =

- For n = 4m? we have: E[C] = 201 < 1.

Apply Markov's Inequality: Pr[C > 1] < 29 — 1.

1 7
PrilC=0]=1—Pr[C>1]>1 573
l.e., with probability at least 7/8 we have no collisions and thus O(1)

query time. But we are using O(m?) space to store m items...

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

Two Level Hashing

Want to preserve O(1) query time while using O(m) space.

Two Level Hashing

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

random hash

192.168.1.34 . collision free O(s?) space
. | s;values S (s7)sp

hash function hash table
16.58.26.164

172.16.254.1

A WON =

Two Level Hashing

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

random hash
function

172.16.254.1

A WON =

192.168.1.34 . collision free O(Siz) space
. [Svalues | ash function hash table

16.58.26.164

For each bucket with s; values, pick a collision free hash
function mapping [s;] — [s7].

Two Level Hashing

Want to preserve O(1) query time while using O(m) space. Q,c;l—\ C

UGS

Two-Level Hashing:

random hash
function

2

s

Q
. ; O(s?) space
. @ hashfunctlon ¢ haslh table
0

172.16.254.1

192.168.1.34

16.58.26.164

- For each bucket with s; values, pick a collision free hash
function mapping [s;] — [s7].

- Just Showed: A random function is collision free with
probability > £ so can just generate a random hash function

and check if it is collision free. {FQ/\
N Zz)
ndh Rk nuug‘k\

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Xj, X Stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 10

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Xj, X Stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 10

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: S=n+ > 1, s?

1[5;

T4

N

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + ¥, E[s?]

Bl R

m o /) _m
ES) ZM;,‘)) ?n N
J! &_]/

N

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 10

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]
2

E[s{] = E Zr_n: Ih(x)=i
J7F7L
N B R 22
"W e b |
-0 . wW.

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] =n + S . E[s? ,
p p [] 2171 [/] I) T

E[s’] = E

Lskelm] ™

Zm:I[h(x,)—f 2 (_I + T, {]L) C'[—e Af,),)

O THLLe LT

Z Hh)<, =i Hhxk

e

_

Collisions again!

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

m
Els]] =E | | Y Tng)=
=

2

=E Z Ihey=i * Ihgxy=i | = Z E[Hh(x,-):/"]lh(xh):i

L kelm] jhelm —

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

m
Els/] =E | | Y Tng)=
=

2

=E Z Ihey=i * Ihgxy=i | = Z E[Hh(x,-):/"]lh(xh):i

L kelm] jikelm]

- Forj=k,

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

2
m

Els/] =E | | Y Tng)=
j=1

=E Z Hh (x))=i Hh (k)= = Z E |:]Ih(x,-):f : Hh(Xre):i

L kelm] jhem) T ~————

- Forj =R,
E [Hh(x,):f ~Hh(xh):f} =K (Hh(x/)_’)ﬂ

 [F (T - S)

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

E[s’] = E
=FE
- Forj=k,

2

m
Z Ih(x)=i
=1

Z Hh (x))=i Hh (xx)=i| = Z E [Hh(x,-):/"]lh(xre):"

LJ,Re[m] Jj,ke[m]

2 .
E | Ingy=i ’]Ih(xh):i} =E {(Hh(x/)—/) } = Pr[h(x) = 1]

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

Els{] =E
=E

- Forj =k,
E {Hh(x/):/'

2

m
Z Ih(x)=i
=1

Z Hh(x, =i * Thixy)= Z E[Hh (x)=i " Th) =i

LJ,Re[m] J,Re[m]

o] = | (=) | = Pehte) == 1

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

E[s’] = E

=K

- Forj =R,
E {Hh(x/):/'

- Forj#Kk,

2

m
Z Ih(x)=i
=1

Z Hh(x, =i * Thixy)= Z E[Hh (x)=i " Th) =i

LJ,Re[m] J,Re[m]

o] = | (=) | = Pehte) == 1

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

2
m

Els/] =E | | Y Tng)=
j=1

=E Z Iheo)=i - Thx)=i | = Z E[Hh(x)=i " The)= }

LJ,Re[m] Jj,ke[m]

- Forj=k,

2
E {Hh(x/):/' ’]Ih(xh):i} =E {(Hh(x/)—/) } = Prlh(x) =1 = 1. ,
O SRS X X hedn Fo i

R) R

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]

2
m

Els/] =E | | Y Tng)=
j=1

=E Z Tnoo)y=i * Tnge)=i | = D E[Hh() “Thx)=i

LJ,Re[m] Jj,ke[m]

- Forj =k,
2
E {Hh(x/):/' ’]Ih(xh):i} =E {(Hh(x/)—/) } = Prlh(x) =1 = 1.

 FOr j # B, [Tngg)—i - Ingsi] = Prih) = 10 h(xy) =

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + YL, E[s7]
2

E[s{] = E Zm: Ih(x)=i - Il:l 1 —-H—Z *K) l
= [L +T. 5T 2T, 0L
LILTs

=E Z Hh Hh (x)=i | = Z E |:]Ih(x/-):/') Hh(m):l} :

LJ,Re[m] Jj,ke[m]

- Forj =R,
2
E {Hh(x/):/' ’]Ih(xh):i} =E {(Hh(x/)—/) } = Prlh(x) =1 = 1

-mm%hEpWFrmmH}:Pmugzmmug:qzé.

-

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i.

Space Usage

BT = - E [Tagy)-i - Tnce-

j:kem]
EE@[LX;SZ]X N i E[j I‘f\ﬂ
5! 1 pketed
N ytk |
. FOI’j =k E {Hh(x,):i : Hh(xk):/} = % ;’\,

—
- Forj#R E {Hh(x,):i : Hh(xk):f] o

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash

function, S: space usage of two level hashing, s;: # items stored at pos i. n

Bt = Y E [Tagy)-i - Tnce-

Jske[m]
1 m 1
=m-—-+2-: C
n <2> n?
D

- fForj=k E {Hha,):f ' Hh(xw:f} =3

- Forj#RE [Hh(x,):i ' Hh(xk):/} =

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

Space Usage

1

Space Usage

E[s{] = Z E [Hh(x,):«' : Hh(xh):)}
J,ke[m]

7m1+2 m 1
o n 2/) n?

-ij:hmpwmﬂwwmﬂ}:g

- Forj#RE [Hh(x,):i ' Hh(xk):/} =

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i. n

Space Usage

E[s{] = Z E [Hh(x,):«' : Hh(xh):)}
J,ke[m]

7m1+2 " !
o n 2) n?

- Forj=RE [Hh(x,):i : Hh(xk):/} =1

- Forj#RE {Hh(x,):f : Hh(x,\,):/} a5

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i. n

Space Usage

Bt = Y E [Tagy)-i - Tnce-

J,ke[m]
B 1) m 1
e Tl

n n?
(<= o T
. FOI’] = f?, E {Hh(x,):i . Hh(xk):/} =

- Forj#RE [Hh(x,):i ' Hh(xk):/} =

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i. n

Space Usage

Bt = Y E [Tagy)-i - Tnce-

J,ke[m]
e (2)
% rL‘1)<2(|fwesetn_ m.)
-Forj:fe,]E{ i Tnge)— }
-Forj;ék,]E[ﬂ . } 1.

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i

1

Space Usage

E[s{] = Z E [Hh(x,):«' : Hh(xh):)}
/) j;Re[m]
1 m 1
—m-—42. L
& o=mly <2> !

m m(m-—1
—+¥§2(Ifwesetn:m.)
n n

- Forj=RE [Hh(x,):i : Hh(xk):/} =1
- Forj#RE [Hh(x,):i ' Hh(xk):/} =
Total Expected Space Usage: (if we set n = m)

E[S] = n + Z E[s?]

i=1

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

1

Space Usage

Esf]=) E {Hh(th)

J,ke[m]
1 m 1 /A(M])
m.n+2.< >

2 nz/
EBH :%4—% (Ifwes%tn_m
- Forj=~kE [Hh(x/):, : Hh(xk):,} =1
- Forj#k E [Hh(xl):,- : Hh(xk):,} =1
Total Expected Space Usage: (if we set n = m)

n
E[S]=n+Y E[s]<n+n-2=3n=3m.

i=1

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

1

Space Usage

E[s{] = Z E [Hh(x,):«' : Hh(xh):)}
J,ke[m]

=m 1Jr2 m !

o n 2/) n?

m m(m-—1
—+¥§2(Ifwesetn:m.)
n n

- Forj=RE [Hh(x,):i : Hh(xk):/} =1
- Forj#RE [Hh(x,):i ' Hh(xk):/} =
Total Expected Space Usage: (if we set n = m)

n
]E[S]:n+ZE[s,-2]§n+n-2:3n:3m.

=1
@mal space with O(1) query time!

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos i.

1

Efficiently Computable Hash Function

So Far: we have assumed a fully random hash function h(x) with
Prlh(x) =i = 1 fori€1,...,n and h(x), h(y) independent for x # .
R —

12

Efficiently Computable Hash Function

So Far: we have assumed a fully random hash function h(x) with
Prlh(x) =i = 1 fori€1,...,n and h(x), h(y) independent for x # .

- To compute a random hash function we have to store a table of
x values and their hash values. Would take at least O(m) space
and O(m) query time to look up h(x) if we hash m values.
Making our whole quest for O(1) query time pointless!

x h(x)
X4 4\
_Xo (1004

X3 | 10

—

12

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

13

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i,j € [n]:

—_

Prlh(9) = inh(y) =1 = .

13

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i,j € [n]:

Prlh() = inh(y) =1 = .
A

Exercise 1: Check the two-level hashing proof to confirm that this
property is all that was needed.

13

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i,j € [n]:

%x‘g Prih(x) = inh(y) = j] = -

n?’

Exercise 1: Check the two-level hashing proof to confirm that this
property is all that was needed.

When h(x) and h(y) are chosen independently at random from [n],
Prlh(x) = inh(y) =j] = % (so a fully random hash function is
pairwise independent).

13

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i,j € [n]:

Prlh() = inh(y) =1 = .

Exercise 1: Check the two-level hashing proof to confirm that this
property is all that was needed.

When h(x) and h(y) are chosen independently at random from [n],
Prlh(x) = inh(y) =j] = % (so a fully random hash function is
airwise independent).

Efficient Implementation: Let p be a prime with p > |U|. Choose
random a, b € [p] with a # 0. Represent x as an integer and let

h(x) =(ax+b mod p) mod n. 13

Universal Hashing

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

ol Prih() = ()] < -

14

Universal Hashing

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

1
Prih(x) = h(y)] < -

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

14

Another common requirement for a hash function:

ﬁjUniversal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

1
Prih(x) = h(y)] < -

e

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

/Pairwise Ind t Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i,j € [n]:

Ne Prih(x) = iNh(y) =]] =

n?

Universal Hashing

14

Universal Hashing

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

1
Prih(x) = h(y)] < -

———

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

ﬂh’(x_):\h(yd)]:Zpr[h(x):mh(y):,‘]:n.%:%_
e = L-,_ i —~
0O &)CIS -

N_ 7T

Universal Hashing

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

1
Prih(x) = h(y)] < -

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

n
. . 1
Prh(x) = h(y)] = Z Prlh(x) =inh(y)=i=n- priiie
i=1
Remember: A fully random hash function is both 2-universal and
pairwise independent. But it is not efficiently implementable.

14

Universal Hashing

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

1
Prih(x) = h(y)] < -

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

n
. . 1
Prh(x) = h(y)] = Z Prlh(x) =inh(y)=i=n- priiie
i=1
Remember: A fully random hash function is both 2-universal and
irwise independent. But it is not efficiently implementable.

Exercise 2: Rework the two-level hashing proof to show that
-universality is in fact all that is needed.

