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Logistics

• Problem Set 1 has been posted on the course website and is
due Friday 9/22 at 11:59pm.

• On the quiz feedback question, several people mentioned
concerns about linear algebra background. The good news is
you have some time – we will do essentially no linear algebra
before the midterm. See resources on Lecture 15 for review
material to get started on.

• For probability/problem solving practice beyond the
quizzes/pset I highly recommend looking at the exercises in
Foundations of Data Science and Probability and Computing.
Feel free to ask for solutions to these on Piazza.

• It is common to not catch everything in lecture. I strongly
encourage going back to the slides to review/check your
understanding after class. Also come to office hours for more
in-depth discussion/examples. 2
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Content Overview

Last Class:

• Linearity of variance.
• Markov’s inequality: the most fundamental concentration
bound. Pr(X ≥ t · E[X]) ≤ 1/t.

• Algorithmic applications of Markov’s inequality, linearity of
expectation, and indicator random variables:

• Counting collisions to estimate CAPTCHA database size.
• Start on analyzing hash tables with random hash functions.
• Collisions free hashing using a table with O(m2) slots to
store m items.
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Content Overview

Today:

• Finish up random hash functions and hash tables.
• 2-level hashing, 2-universal and pairwise independent
hash functions.

• Application of random hashing to distributed load
balancing.

• Through this application learn about Chebyshev’s
inequality, which strengthens Markov’s inequality (maybe
not until next class).
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Quiz Questions
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Quiz Questions
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Hash Tables

We store m items from a large universe in a hash table with n
positions.

• Want to show that when h : U → [n] is a fully random hash
function, query time is O(1) with good probability.

• Equivalently: want to show that there are few collisions
between hashed items.
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Collision Free Hashing

Let C =
∑

i,j∈[m],i<j Ci,j be the number of pairwise collisions between
items.

E[C] = m(m− 1)
2n

(via the Captcha analysis)

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality:

Pr[C ≥ 1] ≤ E[C]
1

= 1
8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1
8
=

7
8

I.e., with probability at least 7/8 we have no collisions and thus O(1)
query time. But we are using O(m2) space to store m items...

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.
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Two Level Hashing

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

• For each bucket with si values, pick a collision free hash
function mapping [si] → [s2i ].

• Just Showed: A random function is collision free with
probability ≥ 7

8 so can just generate a random hash function
and check if it is collision free.
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Space Usage

Query time for two level hashing is O(1): requires evaluating two
hash functions.

What is the expected space usage?
Up to constants, space used is:

E[s2i ] = E








m∑

j=1

Ih(xj)=i




2




= E




∑

j,k∈[m]

Ih(xj)=i · Ih(xk)=i





=
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2
]
= Pr[h(xj) = i] = 1

n .

• For j %= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2 .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. 10
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Efficiently Computable Hash Function

So Far: we have assumed a fully random hash function h(x) with
Pr[h(x) = i] = 1

n for i ∈ 1, . . . ,n and h(x),h(y) independent for x %= y.

• To compute a random hash function we have to store a table of
x values and their hash values. Would take at least O(m) space
and O(m) query time to look up h(x) if we hash m values.
Making our whole quest for O(1) query time pointless!
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Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

Pairwise Independent Hash Function. A random hash function
from h : U → [n] is pairwise independent if for all i, j ∈ [n]:

Pr[h(x) = i ∩ h(y) = j] = 1
n2 .

Exercise 1: Check the two-level hashing proof to confirm that this
property is all that was needed.

When h(x) and h(y) are chosen independently at random from [n],
Pr[h(x) = i ∩ h(y) = j] = 1

n2 (so a fully random hash function is
pairwise independent).

Efficient Implementation: Let p be a prime with p ≥ |U|. Choose
random a,b ∈ [p] with a %= 0. Represent x as an integer and let

h(x) = (ax+ b mod p) mod n.

13
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Universal Hashing

Another common requirement for a hash function:

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U → [n] is two universal if:

Pr[h(x) = h(y)] ≤ 1
n
.

Think-Pair-Shair: Which is a more stringent requirement?
2-universal or pairwise independent?

Pairwise Independent Hash Function. A random hash function
from h : U → [n] is pairwise independent if for all i, j ∈ [n]:

Pr[h(x) = i ∩ h(y) = j] = 1
n2 .

Pr[h(x) = h(y)] =
n∑

i=1

Pr[h(x) = i ∩ h(y) = i] = n · 1
n2 =

1
n
.

Remember: A fully random hash function is both 2-universal and
pairwise independent. But it is not efficiently implementable.

Exercise 2: Rework the two-level hashing proof to show that
2-universality is in fact all that is needed.
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