
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 24 (Final Lecture!)
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Logistics

• Problem Set 5 can be submitted up to 12/11 (Monday) at 11:59pm.

• Exam is next Thursday 12/14, from 10:30am-12:30pm in class.

• I am holding office hours Tuesday 12/12
1-3:30pm and Wednesday 12/13 2pm-3pm Both will be held
in CS140.

• It would be really helpful if you could fill out SRTIs for this class.

• There is no quiz due this week.
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Summary

Last Class:

• Analysis of gradient descent for convex and Lipschitz functions.

This Class:

• Extend gradient descent to constrained optimization via
projected gradient descent.

• Course wrap up and review.
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GD Analysis Proof

Theorem – GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t ≥ R2G2

ε2 iterations, η = R
G
√
t ,

and starting point within radius R of "θ∗, outputs θ̂ satisfying:

f(θ̂) ≤ f("θ∗) + ε.

Step 1: For all i, f("θi)− f("θ∗) ≤ ‖"θi−"θ∗‖2
2−‖"θi+1−"θ∗‖2

2
2η + ηG2

2

=⇒

Step 2: 1
t
∑t

i=1 f("θi)− f("θ∗) ≤ R2

2η·t +
ηG2

2 .
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Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

"θ∗ = argmin
"θ∈S

f("θ),

where S is a convex set.

Definition – Convex Set: A set S ⊆ Rd is convex if and only if,
for any "θ1, "θ2 ∈ S and λ ∈ [0, 1]:

(1− λ)"θ1 + λ · "θ2 ∈ S

E.g. S = {"θ ∈ Rd : ‖"θ‖2 ≤ 1}.
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Projected Gradient Descent

For any convex set let PS(·) denote the projection function onto S .

• PS("y) = argmin"θ∈S ‖"θ −"y‖2.

• For S = {"θ ∈ Rd : ‖"θ‖2 ≤ 1} what is PS("y)?

• For S being a k dimensional subspace of Rd, what is PS("y)?

Projected Gradient Descent

• Choose some initialization "θ1 and set η = R
G
√
t .

• For i = 1, . . . , t− 1

• "θ(out)i+1 = "θi − η · "∇f("θi)
• "θi+1 = PS("θ

(out)
i+1 ).

• Return θ̂ = argmin"θi f(
"θi).
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Convex Projections

Projected gradient descent can be analyzed identically to gradient
descent!

Theorem – Projection to a convex set: For any convex set S ⊆
Rd, "y ∈ Rd, and "θ ∈ S ,

‖PS("y)− "θ‖2 ≤ ‖"y− "θ‖2.
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Projected Gradient Descent Analysis

Theorem – Projected GD: For convex G-Lipschitz function f, and
convex set S , Projected GD run with t ≥ R2G2

ε2 iterations, η = R
G
√
t ,

and starting point within radius R of "θ∗, outputs θ̂ satisfying:

f(θ̂) ≤ f("θ∗) + ε = min
"θ∈S

f("θ) + ε

Recall: "θ(out)i+1 = "θi − η · "∇f("θi) and "θi+1 = PS("θ
(out)
i+1 ).

Step 1: For all i, f("θi)− f("θ∗) ≤
‖"θi−θ∗‖2

2−‖"θ(out)
i+1 −"θ∗‖2

2
2η + ηG2

2 .

Step 1.a: For all i, f("θi)− f("θ∗) ≤ ‖"θi−"θ∗‖2
2−‖"θi+1−"θ∗‖2

2
2η + ηG2

2 .

Step 2: 1
t
∑t

i=1 f("θi)− f("θ∗) ≤ R2

2η·t +
ηG2

2 =⇒ Theorem.
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Course Review
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Randomized Methods

Randomization as a computational resource for massive datasets.

• Focus on problems that are easy on small datasets but hard at
massive scale – set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

• Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms. Check out 614 if you
want to learn more.

• In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.
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Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/ε2)
dimensions while preserving pairwise distances.

• Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

• Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

• Spectral graph theory – nonlinear dimension reduction and
spectral clustering for community detection.

• In the process covered linear algebraic tools that are very
broadly useful in ML and data science: eigendecomposition,
singular value decomposition, projection, norm transformations.
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Continuous Optimization

Foundations of continuous optimization and gradient descent.

• Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

• How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

• Simple extension to projected gradient descent for optimization
over a convex constraint set.

• Lots that we didn’t cover: online and stochastic gradient
descent, accelerated methods, adaptive methods, second order
methods (quasi-Newton methods), practical considerations.
Gave mathematical tools to understand these methods.
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Thanks for a great semester!
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Final Exam Questions/Review
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