COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 24 (Final Lecture!)

Logistics

- Problem Set 5 can be submitted up to 12/11 (Monday) at 11:59pm.
- Exam is next Thursday 12/14, from 10:30am-12:30pm in class.
- I am holding office hours Tuesday 12/12 1-3:30pm and Wednesday 12/13 2pm-3pm Both will be held in CS140.
- It would be really helpful if you could fill out SRTIs for this class.
- There is no quiz due this week.

Summary

Last Class:

- Analysis of gradient descent for convex and Lipschitz functions.

This Class:

- Extend gradient descent tt constrained optimization via projected gradient descent.
- Course wrap up and review.

GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex GLipschitz function f, GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t}}$, and starting point within radius R of $\vec{\theta}_{*}$, outputs $\hat{\theta}$ satisfying:

$$
\underline{f(\hat{\theta}) \leq f\left(\vec{\theta}_{*}\right)+\epsilon .}
$$

Step 1: For all i, f($\left.\vec{\theta}_{i}\right)-f\left(\vec{\theta}_{*}\right) \leq \frac{\left\|\vec{\theta}_{i}-\vec{\theta}_{*}\right\|_{2}^{2}-\left\|\vec{\theta}_{i+1}-\vec{\theta}_{*}\right\|_{2}^{2}}{\left(\frac{\tau G^{2}}{2}\right.} \frac{\underline{\varepsilon}}{2} \begin{aligned} & \frac{2 \eta}{2} \\ & \text { progress to }\end{aligned} \theta_{*}$

GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex GLipschitz function f, GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t}}$, and starting point within radius R of $\vec{\theta}_{*}$, outputs $\hat{\theta}$ satisfying:

$$
f(\hat{\theta}) \leq f\left(\vec{\theta}_{*}\right)+\epsilon
$$

Step 1: For all i, $f\left(\vec{\theta}_{i}\right)-f\left(\vec{\theta}_{*}\right) \leq \frac{\left\|\vec{\theta}_{-}-\vec{\theta}_{*}\right\|_{2}^{2}-\left\|\vec{\theta}_{i+1}-\vec{\theta}_{*}\right\|_{2}^{2}}{2 \eta}+\frac{\eta G^{2}}{2} \Longrightarrow$
Step 2: $\underline{\frac{1}{t} \sum_{i=1}^{t} f\left(\vec{\theta}_{i}\right)-f\left(\vec{\theta}_{*}\right) \underset{\left(\frac{R^{2}}{ \pm}\right)+\left(\frac{\eta \sigma^{2}}{2 \eta \cdot t}\right.}{2}}$ telescoping sun
$\leq \varepsilon$ vic algebra
biggest step is G.M

$$
\hat{\theta}=\theta_{+} \quad \hat{\theta}=\underset{i=1, \ldots+t}{\arg ^{\omega_{n}}} f\left(\theta_{i}\right)
$$

Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

$$
\vec{\theta}^{*}=\underset{\underline{\theta} \in \mathcal{S}}{\arg \min f(\vec{\theta})},
$$

where \mathcal{S} is a convex set.

Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

$$
S \subseteq \mathbb{R}^{d} \quad \vec{\theta}^{*}=\underset{\vec{\theta} \in \mathcal{S}}{\arg \min f(\vec{\theta})}
$$

where \mathcal{S} is a convex set.

Definition - Convex Set: A set $\mathcal{S} \subseteq \mathbb{R}^{d}$ is convex if and only if, for any $\vec{\theta}_{1}, \vec{\theta}_{2} \in \mathcal{S}$ and $\lambda \in[0,1]$:

$$
(1-\lambda) \vec{\theta}_{1}+\lambda \cdot \vec{\theta}_{2} \in \mathcal{S}
$$

Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

$$
\vec{\theta}^{*}=\underset{\vec{\theta} \in \mathcal{S}}{\arg \min } f(\vec{\theta}),
$$

where \mathcal{S} is a convex set.
Definition - Convex Set: A set $\mathcal{S} \subseteq \mathbb{R}^{d}$ is convex if and only if, for any $\vec{\theta}_{1}, \vec{\theta}_{2} \in \mathcal{S}$ and $\lambda \in[0,1]$:

$$
(1-\lambda) \vec{\theta}_{1}+\lambda \cdot \vec{\theta}_{2} \in \mathcal{S}
$$

E.g. $\mathcal{S}=\left\{\vec{\theta} \in \mathbb{R}^{d}:\|\vec{\theta}\|_{2} \leq 1\right\} . \rightarrow$ triangle inequality

$\theta_{1}, \theta_{2} \in S$
$\lambda \theta_{1}+(1-\lambda) \theta_{2} \in S$
$\begin{aligned} & \left\|\lambda \theta_{1}+(1-\lambda) \theta_{2}\right\|_{2} \leq 1 \\ \leq & \left\|\lambda \theta_{1}\right\|+\left\|(1-\lambda) \theta_{2}\right\|_{2}=\lambda\left\|\theta_{1}\right\|_{2}+(1-\lambda) \mid \theta_{2} \|_{25} \leq 1\end{aligned}$

Projected Gradient Descent

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S}.

- $P_{\underline{S}}(\vec{y})=\arg \min _{\underline{\vec{\theta} \in \mathcal{S}}}\|\vec{\theta}-\vec{y}\|_{2}$.

Projected Gradient Descent
For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S}.

- $P_{\mathcal{S}}(\vec{y})=\arg \min _{\vec{\theta} \in \mathcal{S}}\|\vec{\theta}-\vec{y}\|_{2}$.
- For $\mathcal{S}=\left\{\vec{\theta} \in \mathbb{R}^{d}:\|\vec{\theta}\|_{2} \leq 1\right\}$ what is $P_{\mathcal{S}}(\vec{y})$?

Projected Gradient Descent
For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S}.

- $P_{\mathcal{S}}(\vec{y})=\arg \min _{\vec{\theta} \in \mathcal{S}}\|\vec{\theta}-\vec{y}\|_{2}$.
- For $\mathcal{S}=\left\{\vec{\theta} \in \mathbb{R}^{d}:\|\vec{\theta}\|_{2} \leq 1\right\}$ what is $P_{\mathcal{S}}(\vec{y})$?
- For \mathcal{S} being a k dimensional subspace of \mathbb{R}^{d}, what is $P_{\mathcal{S}}(\vec{y})$?

Let V be an orthonormal leesis for

$$
D_{s}(y)=V^{\top} y
$$

Projected Gradient Descent

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S}.

- $P_{\mathcal{S}}(\vec{y})=\arg \min _{\vec{\theta} \in \mathcal{S}}\|\vec{\theta}-\vec{y}\|_{2}$.
- For $\mathcal{S}=\left\{\vec{\theta} \in \mathbb{R}^{d}:\|\vec{\theta}\|_{2} \leq 1\right\}$ what is $P_{\mathcal{S}}(\vec{y})$?
- For \mathcal{S} being a k dimensional subspace of \mathbb{R}^{d}, what is $P_{\mathcal{S}}(\vec{y})$?

Projected Gradient Descent

- Choose some initialization $\vec{\theta}_{1}$ and set $\eta=\frac{R}{G \sqrt{t}}$.

- For $i=1, \ldots, t-1$

$$
\cdot \vec{\theta}_{i+1}^{\text {(out })}=\vec{\theta}_{i}-\eta \cdot \vec{\nabla} f\left(\vec{\theta}_{i}\right)
$$

$$
\left[\underline{\underline{\theta} \vec{\theta}_{i+1}}=P_{\mathcal{S}}\left(\bar{\theta}_{i+1}^{(\text {out })}\right) .\right.
$$

- Return $\hat{\theta}=\arg \min _{\vec{\theta}_{i}} f\left(\vec{\theta}_{i}\right)$.

Convex Projections

Projected gradient descent can be analyzed identically to gradient descent!

Convex Projections

Projected gradient descent can be analyzed identically to gradient descent!

Theorem - Projection to a convex set: For any convex set $\mathcal{S} \subseteq$ $\mathbb{R}^{d}, \vec{y} \in \mathbb{R}^{d}$, and $\vec{\theta} \in \mathcal{S}$,

$$
\left\|P_{\mathcal{S}}(\vec{y})-\vec{\theta}\right\|_{2} \leq\|\vec{y}-\vec{\theta}\|_{2} .
$$

Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and convex set \mathcal{S}, Projected GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t} t}$, and starting point within radius R of $\vec{\theta}_{*}$, outputs $\hat{\theta}$ satisfying:

$$
\underline{f(\hat{\theta}) \leq f\left(\vec{\theta}_{*}\right)+\epsilon}=\underbrace{\min f(\vec{\theta})}_{\vec{\theta} \in \mathcal{S}}+\epsilon
$$

Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and convex set \mathcal{S}, Projected GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t} t}$, and starting point within radius R of $\vec{\theta}_{*}$, outputs $\hat{\theta}$ satisfying:

$$
f(\hat{\theta}) \leq f\left(\vec{\theta}_{*}\right)+\epsilon=\min _{\vec{\theta} \in \mathcal{S}} f(\vec{\theta})+\epsilon
$$

Recall: $\vec{\theta}_{i+1}^{\text {(out) }}=\vec{\theta}_{i}-\eta \cdot \vec{\nabla} f\left(\vec{\theta}_{i}\right)$ and $\vec{\theta}_{i+1}=P_{\mathcal{S}}\left(\vec{\theta}_{i+1}^{\text {(out) }}\right)$.

Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and convex set \mathcal{S}, Projected GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t} t}$, and starting point within radius R of $\vec{\theta}_{*}$, outputs $\hat{\theta}$ satisfying:

$$
f(\hat{\theta}) \leq f\left(\vec{\theta}_{*}\right)+\epsilon=\min _{\vec{\theta} \in \mathcal{S}} f(\vec{\theta})+\epsilon
$$

Recall: $\vec{\theta}_{i+1}^{\text {out })}=\vec{\theta}_{i}-\eta \cdot \vec{\nabla} f\left(\vec{\theta}_{i}\right)$ and $\vec{\theta}_{i+1}=P_{\mathcal{S}}\left(\vec{\theta}_{i+1}^{(\text {out })}\right)$.
Step 1: For all $i, f\left(\vec{\theta}_{i}\right)-f\left(\vec{\theta}_{*}\right) \leq \frac{\left\|\vec{\theta}_{i}-\theta_{*}\right\|_{2}^{2}-\left\|\vec{\theta}_{+1}^{\text {(out) }}-\vec{\theta}_{*}\right\|_{2}^{2}}{2 \eta}+\frac{\eta G^{2}}{2}$.)

Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and convex set \mathcal{S}, Projected GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t} t}$, and starting point within radius R of $\vec{\theta}_{*}$, outputs $\hat{\theta}$ satisfying:

$$
f(\hat{\theta}) \leq f\left(\vec{\theta}_{*}\right)+\epsilon=\min _{\vec{\theta} \in \mathcal{S}} f(\vec{\theta})+\epsilon
$$

Recall: $\vec{\theta}_{i+1}^{\text {(out) }}=\vec{\theta}_{i}-\eta \cdot \overrightarrow{\nabla f}\left(\vec{\theta}_{i}\right)$ and $\vec{\theta}_{i+1}=P_{\mathcal{S}}\left(\vec{\theta}_{i+1}^{\text {(out) }}\right)$. $\left\|\theta_{i+1}^{\text {out }}-\theta_{*}\right\|_{2}^{2} \geqslant \| \theta_{i+1}$
Step 1: For all i, $f\left(\vec{\theta}_{i}\right)-f\left(\vec{\theta}_{*}\right) \leq \frac{\left\|\vec{\theta}_{i}-\theta_{*}\right\|_{2}^{2}-\left\|\theta_{i+1}^{\text {(out) }}-\vec{\theta}_{*}\right\|_{2}^{2}}{\} \frac{\eta G^{2}}{2 \eta}$.
Step 1.a: For all i, $f\left(\vec{\theta}_{i}\right)-f\left(\vec{\theta}_{*}\right) \leq \frac{\left\|\vec{\theta}_{i}-\vec{\theta}_{*}\right\|_{2}^{2}-\left\|\vec{i}_{i+1}-\vec{\theta}_{*}\right\|_{2}^{2}}{2 \eta}+\frac{\eta G^{2}}{2}$.

Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and convex set \mathcal{S}, Projected GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t} t}$, and starting point within radius R of $\vec{\theta}_{*}$, outputs $\hat{\theta}$ satisfying:

$$
f(\hat{\theta}) \leq f\left(\vec{\theta}_{*}\right)+\epsilon=\min _{\vec{\theta} \in \mathcal{S}} f(\vec{\theta})+\epsilon
$$

Recall: $\vec{\theta}_{i+1}^{\text {(out) }}=\vec{\theta}_{i}-\eta \cdot \vec{\nabla} f\left(\vec{\theta}_{i}\right)$ and $\vec{\theta}_{i+1}=P_{\mathcal{S}}\left(\vec{\theta}_{i+1}^{\text {(out) })}\right)$.
$f(x)=x^{\top} c$
Step 1: For all i, $f\left(\vec{\theta}_{i}\right)-f\left(\vec{\theta}_{*}\right) \leq \frac{\left\|\vec{\theta}_{i}-\theta_{*}\right\|_{2}^{2}-\left\|\theta_{i+1}^{\text {(out) }}-\vec{\theta}_{*}\right\|_{2}^{2}}{2 \eta}+\frac{\eta G^{2}}{2}$.
$\min _{\|x\|_{2}^{\leq 1}} \frac{x^{\top} C}{} \frac{-c}{n<\|_{1}}$
Step 2: $\frac{1}{t} \sum_{i=1}^{t} f\left(\vec{\theta}_{i}\right)-f\left(\vec{\theta}_{*}\right) \leq \frac{R^{2}}{2 \eta \cdot t}+\frac{\eta G^{2}}{2} \Longrightarrow$ Theorem.

$\leqslant \varepsilon$

$$
\begin{aligned}
f(x)=x^{\top} c & \sum:\left\{x:\|x\|_{2}<1\right\} \\
\forall \theta_{1}, \theta_{2}, \lambda \quad & f\left((1-\lambda) \theta_{1}+\lambda \theta_{2}\right) \leqslant(-\lambda) f\left(\theta_{1}\right)+\lambda f\left(\theta_{2}\right) \\
\psi & \\
& {\left[\left(1-\lambda \theta_{1}+\lambda \theta_{2}\right]^{\top} c\right.} \\
& =(1-\lambda) \theta_{1}^{\top} c+\lambda \theta_{2}^{\top} c=(1-\lambda) f(a)+\lambda f\left(\theta_{2}\right)
\end{aligned}
$$

Course Review

Randomized Methods

Randomization as a computational resource for massive datasets.

Randomized Methods

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at massive scale - set size estimation, load balancing, distinct elements counting (MinHash), checking set membership (Bloom Filters), frequent items counting (Count-min sketch), near neighbor search (locality sensitive hashing).

Randomized Methods

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at massive scale - set size estimation, load balancing, distinct elements counting (MinHash), checking set membership (Bloom Filters), frequent items counting (Count-min sketch), near neighbor search (locality sensitive hashing).
- Just the tip of the iceberg on randomized streaming/sketching/hashing algorithms. Check out 614 if you want to learn more.

Randomized Methods

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at massive scale - set size estimation, load balancing, distinct elements counting (MinHash), checking set membership (Bloom Filters), frequent items counting (Count-min sketch), near neighbor search (locality sensitive hashing).
- Just the tip of the iceberg on randomized streaming/sketching/hashing algorithms. Check out 614 if you want to learn more.
In the process covered probability/statistics tools that are very useful beyond algorithm design: concentration inequalities, higher moment bounds, law of large numbers, central limit theorem, linearity of expectation and variance, union bound, median as a robust estimator.

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O\left(\log n / \epsilon^{2}\right)$ dimensions while preserving pairwise distances.

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O\left(\log n / \epsilon^{2}\right)$ dimensions while preserving pairwise distances.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O\left(\log n / \epsilon^{2}\right)$ dimensions while preserving pairwise distances.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.
- Low-rank approximation of similarity matrices and entity embeddings (e.g., LSA, word2vec, DeepWalk).

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O\left(\log n / \epsilon^{2}\right)$ dimensions while preserving pairwise distances.
- Dimensionality reduction via low-rank approximation and optimal solution with PCA/eigendecomposition/SVD.
- Low-rank approximation of similarity matrices and entity embeddings (e.g., LSA, word2vec, DeepWalk).
- Spectral graph theory - nonlinear dimension reduction and spectral clustering for community detection.

Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL lemma: compression from any d-dimensions to $O\left(\log n / \epsilon^{2}\right)$ dimensions while preserving pairwise distances.
. Dimensionality reduction via low-rank approximation and Gptimal solution with PCA/eigendecomposition/SVD.
- Low-rank approximation of similarity matrices and entity embeddings (e.g., LSA, word2vec, DeepWalk).
. Spectral graph theory - nonlinear dimension reduction and spectral clustering for community detection.
- In the process covered linear algebraic tools that are very broadly useful in ML and data science: eigendecomposition, singular value decomposition, projection, norm transformations.

Continuous Optimization

Foundations of continuous optimization and gradient descent.

Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.

Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.
- How to analyze gradient descent in a simple setting (convex Lipschitz functions).

Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.
- How to analyze gradient descent in a simple setting (convex Lipschitz functions).
- Simple extension to projected gradient descent for optimization over a convex constraint set.

Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness, directional derivative/gradient.
- How to analyze gradient descent in a simple setting (convex Lipschitz functions).
- Simple extension to projected gradient descent for optimization over a convex constraint set.
- Lots that we didn't cover: online and stochastic gradient descent, accelerated methods, adaptive methods, second order methods (quasi-Newton methods), practical considerations. Gave mathematical tools to understand these methods.

Thanks for a great semester!

Final Exam Questions/Review

$$
\begin{gathered}
\lambda_{1} \approx \lambda_{2} \quad x=c_{1} v_{1} \ldots c_{d} v_{2} \\
A_{x}=\lambda_{1} c_{1} v_{1} \ldots \lambda_{2} c_{2} v_{d}
\end{gathered}
$$

- dan't Glly undustad wror adysis at and $\left\|\hat{v}-v_{1}\right\|^{s} \varepsilon$

$$
\begin{aligned}
& A(A(A x))=\underline{A^{+} x}=\lambda_{1}^{+} c_{1} V_{1} \cdots \lambda_{d}^{+} c_{d} V_{d} \\
& x<R^{2}, A \in \mathbb{R}^{2 \times L} \\
& \left(A^{3}-2 A^{2}+A\right) \times \begin{array}{l}
\left.3 d^{2}\right) \\
A^{3} x
\end{array} d^{2} \quad d^{2} \cdot R^{2} A x \\
& d^{2}
\end{aligned}
$$

Final Exam Questions/Review

$$
\begin{aligned}
& \begin{array}{cc}
\pi x & \frac{V^{\top} x}{P L A}
\end{array} \\
& f(x)=x^{\top} c \quad \nabla f(x)=c^{m^{2}} \\
& f(x)=\sum_{i=1}^{d} x(i) c(i) \\
& \frac{\partial f(x)}{\partial x_{i}}=c(i) \quad\left[\begin{array}{c}
\frac{\partial f x}{\partial x_{i}} \\
\vdots \\
\frac{\partial f x}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{c}
c(1) \\
\vdots \\
c(n)
\end{array}\right]=\vec{c}
\end{aligned}
$$

Final Exam Questions/Review

Final Exam Questions/Review

$$
2\left[\begin{array}{l}
2 \\
A
\end{array}[x] \quad \begin{array}{rl}
A x= & A\left(c_{1} v_{1}+c_{2} v_{2}\right) \\
& A c_{1} v_{1}+A c_{2} v_{2}
\end{array}\right.
$$

Final Exam Questions/Review

