COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2023.
Lecture 24 (Final Lecture!)



- Problem Set 5 can be submitted up to 12/11 (Monday) at 11:59pm.
- Exam is next Thursday 12/14, from 10:30am-12:30pm in class.

- 1 am holding office hours Tuesday 12/12
1-3:30pm and Wednesday 12/13 2pm-3pm Both will be held
in CS140.
nLolay

- It would be really helpful if you could fill out SRTIs for this class.
[t WOURD,

- There is no quiz due this week.
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Last Class:
- Analysis of gradient descent for convex and Lipschitz functions.
_—’/\—_

This Class:

- Extend gradient descent tc{ constrained optimization via
projected gradient descent.

- Course wrap up and review.



GD Analysis Proof
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Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

0" = arg minf(é),
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where S is a convex set.
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Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

where S is a convex set.

Definition - Convex Set: A set S C RY is convex if and only if,
forany 65,6, € S and A € [0, 1]:

(1-Nf+r-6, €S
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Projected Gradient Descent

For any convex set let Ps(+) denote the projection function onto S.
_

* Ps() = argming_g |0 — V2.
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Projected Gradient Descent

For any convex set let Ps(+) denote the projection function onto S.

* Ps(7) = argming_g |6 = V2.
- ForS ={f e RY: ||0]], < 1} what is Ps(¥)?
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Projected Gradient Descent

For any convex set let Ps(+) denote the projection function onto S.

* Ps(7) = argming_g |6 = V2.
- ForS ={f e RY: ||0]], < 1} what is Ps(¥)?
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Projected Gradient Descent

For any convex set let Ps(+) denote the projection function onto S.

* Ps(7) = argming_g |6 = V2.
- ForS ={f e RY: ||0]], < 1} what is Ps(¥)?

- For S being a k dimensional subspace of RY, what is Ps(})?

Projected Gradient Descent 7770
B [
- Choose some initialization ; and set n = Giﬁ.
- Fori=1,...,t—1
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- Return f = arg min; (6)).



Convex Projections

Projected gradient descent can be analyzed identically to gradient
descent!



Convex Projections

Projected gradient descent can be analyzed identically to gradient
descent!

Theorem - Projection to a convex set: For any convex set S C
RY JeRI andf e S,
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Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and

convex set S, Projected GD run with t > g iterations, n = %,
and starting point within radius R of d,, outputs @ satisfying:
f(B) < f(6.) + ¢ = minf(0) + €
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Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > R'G iterations, n=

€2
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and starting point within radius R of 6,, outputs 6 satisfying:

f(6) < f(6.) + € = minf(8) + €
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Recall: 614" = g, — - V(6)) and G, = Ps(6124").

_/—__\



Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > R'G iterations, n=
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Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > Rigf i = %,
and starting point within radius R of d,, outputs @ satisfying:

f(6) < f(6.) + € = minf(8) + €
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Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > R%@z- iterations, n = %ﬂ,
and starting point within radius R of 6,, outputs 6 satisfying:
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Randomized Methods

Randomization as a computational resource for massive datasets.



Randomized Methods

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale - set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).
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- Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms. Check out 614 if you
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want to learn more.



Randomized Methods

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale - set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

- Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms. Check out 614 if you
want to learn more.

-] In the process covered probability/statistics toals that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.
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- Started with randomized dimensionality reduction and the JL
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dimensions while preserving pairwise distances.
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Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/¢?)
dimensions while preserving pairwise distances.

Eimensionality reduction via low-rank approximation and
ptimal solution with PCA/eigendecomposition/SVD.

- Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

-} Spectral graph theory — nonlinear dimension reduction and
spectral clustering for community detection.

- In the process covered linear algebraic tools that are very
broadly useful in ML and data science: eigendecomposition,
singular value decomposition, projection, norm transformations.
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Continuous Optimization

Foundations of continuous optimization and gradient descent.
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Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

- How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

- Simple extension to projected gradient descent for optimization
over a convex constraint set.

- Lots that we didn’t cover: online and stochastic gradient
descent, accelerated methods, adaptive methods, second order
methods (quasi-Newton methods), practical considerations.

@Qwathematical tools to understand these methods.
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Thanks for a great semester!
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Final Exam Questions/Review

Ay =X X ZONL L Gy

AX - >\\(~|\/|~ - /\;_ Cé,\/é
~ doN Clvy N s S OLI N

WK-vilsg o (e
(')
‘P\GQ(% @) ::@: 7\J\rC|\/, 7\§C¢\’4

x L

K2 | AER B9 o Aruh By

(B 20 B)X & d e,




Final Exam Questions/Review
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Final Exam Questions/Review
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