COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2023. Lecture 22

Logistics

- Problem Set 4 core problems are due Friday. Challenge problems are due Monday.
- Quiz due Monday (last of the semester).
- Problem Set 5 will be released Friday or Saturday, and is optional. The core problems can be used to replace the lowest core problem grade on a previous problem set. It will contain three challenge problems as well.
- Final exam study material has been released on the course webpage/Moodle. I will announce additional office hours for final review shortly.
- Next Monday 12/4 at **3pm in CS 140** I will hold another linear algebra review session.
- Please fill out SRTIs (course reviews)!

Summary

Last Class Before Break: Fast computation of the SVD/eigendecomposition.

- Power method for approximating the top eigenvector of a matrix.
- Analysis of convergence rate we didn't quite finish but we covered the most important ideas.
- Convergence rate depends on the gap between the largest and second largest eigenvalue.

Final Three Classes:

- General iterative algorithms for optimization, specifically gradient descent and its variants.
- What are these methods, when are they applied, and how do you analyze their performance?
- Small taste of what you can find in COMPSCI 5900P or 6900P.

Discrete vs. Continuous Optimization

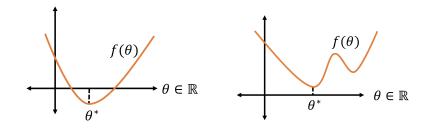
Discrete (Combinatorial) Optimization: (traditional CS algorithms)

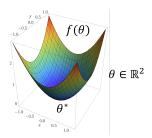
- Graph Problems: min-cut, max flow, shortest path, matchings, maximum independent set, traveling salesman problem
- Problems with discrete constraints or outputs: bin-packing, scheduling, sequence alignment, submodular maximization
- Generally searching over a finite but exponentially large set of possible solutions. Many of these problems are NP-Hard.

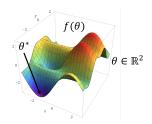
Continuous Optimization: (maybe seen in ML/advanced algorithms)

- Unconstrained convex and non-convex optimization.
- Linear programming, quadratic programming, semidefinite programming

Continuous Optimization Examples







Given some function $f : \mathbb{R}^d \to \mathbb{R}$, find $\vec{\theta}_{\star}$ with:

$$f(\vec{\theta}_{\star}) = \min_{\vec{\theta} \in R^d} f(\vec{\theta}) + \epsilon$$

Typically up to some small approximation factor.

Often under some constraints:

•
$$\|\vec{\theta}\|_2 \le 1$$
, $\|\vec{\theta}\|_1 \le 1$.

- $A\vec{\theta} \leq \vec{b}, \quad \vec{\theta}^{\mathsf{T}}A\vec{\theta} \geq 0.$
- $\sum_{i=1}^{d} \vec{\theta}(i) \leq c.$

Modern machine learning centers around continuous optimization. Typical Set Up: (supervised machine learning)

- Have a model, which is a function mapping inputs to predictions (neural network, linear function, low-degree polynomial etc).
- The model is parameterized by a parameter vector (weights in a neural network, coefficients in a linear function or polynomial)
- Want to train this model on input data, by picking a parameter vector such that the model does a good job mapping inputs to predictions on your training data.

This training step is typically formulated as a continuous optimization problem.

Optimization in ML

Example: Linear Regression

Model: $M_{\vec{\theta}} : \mathbb{R}^d \to \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text{def}}{=} \langle \vec{\theta}, \vec{x} \rangle = \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d)$. Parameter Vector: $\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)

Optimization Problem: Given data points (training points) $\vec{x}_1, \ldots, \vec{x}_n$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels $y_1, \ldots, y_n \in \mathbb{R}$, find $\vec{\theta}_*$ minimizing the loss function:

$$L_{\mathbf{X},\mathbf{y}}(\vec{\theta}) = L(\vec{\theta},\mathbf{X},\vec{y}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i),y_i)$$

where ℓ is some measurement of how far $M_{\vec{\theta}}(\vec{x}_i)$ is from y_i .

- $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = (M_{\vec{\theta}}(\vec{x}_i) y_i)^2$ (least squares regression)
- $y_i \in \{-1, 1\}$ and $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = \ln(1 + \exp(-y_i M_{\vec{\theta}}(\vec{x}_i)))$ (logistic regression)

Optimization in ML

$$L_{\mathbf{X},\vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)$$

- Supervised means we have labels y_1, \ldots, y_n for the training points.
- Solving the final optimization problem has many different names: likelihood maximization, empirical risk minimization, minimizing training loss, etc.
- Continuous optimization is also very common in unsupervised learning. (PCA, spectral clustering, etc.)
- Generalization tries to explain why minimizing the loss $L_{X,\vec{y}}(\vec{\theta})$ on the *training points* minimizes the loss on future *test points*. I.e., makes us have good predictions on future inputs.

Optimization Algorithms

Choice of optimization algorithm for minimizing $f(\vec{\theta})$ will depend on many things:

- The form of f (in ML, depends on the model & loss function).
- Any constraints on $\vec{\theta}$ (e.g., $\|\vec{\theta}\| < c$).
- Computational constraints, such as memory constraints.

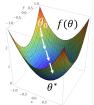
$$L_{\mathbf{X},\vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)$$

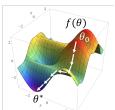
What are some popular optimization algorithms?

Gradient Descent

Next few classes: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be applied to almost any continuous function we care about optimizing.
- Often not the 'best' choice for any given function, but it is the approach of choice in ML since it is simple, general, and often works very well.
- At each step, tries to move towards the lowest nearby point in the function that is can in the opposite direction of the gradient.





Let $\vec{e}_i \in \mathbb{R}^d$ denote the i^{th} standard basis vector, $\vec{e}_i = \underbrace{[0, 0, 1, 0, 0, \dots, 0]}_{1 \text{ at position } i}.$

Partial Derivative:

$$\frac{\partial f}{\partial \vec{\theta}(i)} = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \cdot \vec{e}_i) - f(\vec{\theta})}{\epsilon}.$$

Directional Derivative:

$$D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \vec{v}) - f(\vec{\theta})}{\epsilon}.$$

Gradient: Just a 'list' of the partial derivatives.

$$\vec{\nabla} f(\vec{\theta}) = \begin{bmatrix} \frac{\partial f}{\partial \vec{\theta}(1)} \\ \frac{\partial f}{\partial \vec{\theta}(2)} \\ \vdots \\ \frac{\partial f}{\partial \vec{\theta}(d)} \end{bmatrix}$$

Directional Derivative in Terms of the Gradient:

 $D_{\vec{v}}f(\vec{\theta}) = \langle \vec{v}, \vec{\nabla}f(\vec{\theta}) \rangle.$

Often the functions we are trying to optimize are very complex (e.g., a neural network). We will assume access to:

Function Evaluation: Can compute $f(\vec{\theta})$ for any $\vec{\theta}$.

Gradient Evaluation: Can compute $\vec{\nabla}f(\vec{\theta})$ for any $\vec{\theta}$.

In neural networks:

- Function evaluation is called a forward pass (propogate an input through the network).
- Gradient evaluation is called a backward pass (compute the gradient via chain rule, using backpropagation).

Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} + \eta \vec{v}$, where η is a (small) 'step size' and \vec{v} is a direction chosen to minimize $f(\vec{\theta}^{(i-1)} + \eta \vec{v})$.

$$D_{\vec{v}}f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \vec{v}) - f(\vec{\theta})}{\epsilon} \cdot D_{\vec{v}}f(\vec{\theta}^{(i-1)}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \epsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\epsilon}.$$

So for small η :

$$f(\vec{\theta}^{(i)}) - f(\vec{\theta}^{(i-1)}) = f(\vec{\theta}^{(i-1)} + \eta \vec{v}) - f(\vec{\theta}^{(i-1)}) \approx \eta \cdot D_{\vec{v}} f(\vec{\theta}^{(i-1)})$$
$$= \eta \cdot \langle \vec{v}, \vec{\nabla} f(\vec{\theta}^{(i-1)}) \rangle.$$

We want to choose \vec{v} minimizing $\langle \vec{v}, \nabla f(\vec{\theta}^{(i-1)}) \rangle$ – i.e., pointing in the direction of $\nabla f(\vec{\theta}^{(i-1)})$ but with the opposite sign.

Gradient Descent Psuedocode

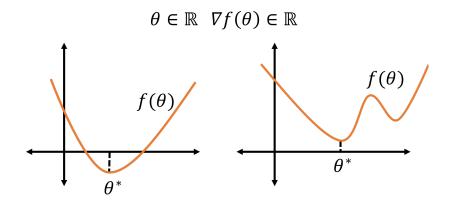
Gradient Descent

- Choose some initialization $\vec{\theta}^{(0)}$.
- For $i = 1, \ldots, t$
 - $\cdot \vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} \eta \nabla f(\vec{\theta}^{(i-1)})$
- Return $\vec{\theta}^{(t)}$, as an approximate minimizer of $f(\vec{\theta})$.

Step size η is chosen ahead of time or adapted during the algorithm (details to come.)

• For now assume η stays the same in each iteration.

When Does Gradient Descent Work?

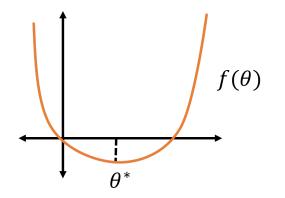


Gradient Descent Update: $\vec{\theta}_{i+1} = \vec{\theta}_i - \eta \nabla f(\vec{\theta}_i)$

Convexity

Definition – Convex Function: A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

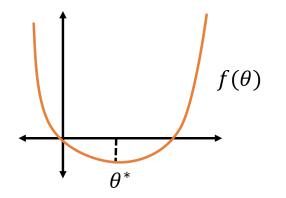
$$(1 - \lambda) \cdot f(\vec{\theta_1}) + \lambda \cdot f(\vec{\theta_2}) \ge f\left((1 - \lambda) \cdot \vec{\theta_1} + \lambda \cdot \vec{\theta_2}\right)$$



Convexity

Corollary – Convex Function: A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

$$f(\vec{ heta_2}) - f(\vec{ heta_1}) \ge \vec{
abla} f(\vec{ heta_1})^{\mathsf{T}} \left(\vec{ heta_2} - \vec{ heta_1}\right)$$



Convex Functions: After sufficient iterations, if the step size η is chosen appropriately, gradient descent will converge to a approximate minimizer $\hat{\theta}$ with:

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon = \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

Examples: least squares regression, logistic regression, sparse regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent will converge to a approximate stationary point $\hat{\theta}$ with:

$$\|\nabla f(\hat{\theta})\|_2 \leq \epsilon.$$

Examples: neural networks, clustering, mixture models.