
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 21

1

Logistics

See Piazza post about upcoming schedule information.

• No quiz due this week.

• Problem Set 4 is due 12/1.

• No class Thursday.

• Office hours next Monday at 10am in CS234.

• No class next Tuesday

• Class over Zoom next Thursday 11/30 at 10am. Office hours over
Zoom at 9am. See Piazza for Zoom link.

• Second Linear Algebra Review Session on Monday 12/4 at 3pm
in CS140.

2

- ,

Summary

Last Few Classes: Spectral Graph Partitioning

• Focus on separating graphs with small but relatively balanced
cuts.

• Connection to second smallest eigenvector of graph Laplacian.

• Provable guarantees for stochastic block model.

• Expectation analysis in class. See slides for full analysis.

This Class: Computing the SVD/eigendecomposition.

• Efficient algorithms for SVD/eigendecomposition.

• Iterative methods: power method, Krylov subspace methods.

• High level: a glimpse into fast methods for linear algebraic
computation, which are workhorses behind data science.

3

- - 1 * 0 = 0 * 1

⇐

Quiz Question

4

[sea)s⇐i¥÷#

A :¥¥÷¥¥ i z E t¥
' \

±÷÷i*#÷¥o:

Efficient Eigendecomposition and SVD

We have talked about the eigendecomposition and SVD as ways to
compress data, to embed entities like words and documents, to
compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on large
datasets?

5

Computing the SVD

Basic Algorithm: To compute the SVD of full-rank X ∈ Rn×d,
X = UΣVT:

• Compute XTX – O(nd2) runtime.

• Find eigendecomposition XTX = VΛVT – O(d3) runtime.

• Compute L = XV – O(nd2) runtime. Note that L = UΣ.

• Set σi = ‖Li‖2 and Ui = Li/‖Li‖2. – O(nd) runtime.

Total runtime: O(nd2 + d3) = O(nd2) (assume w.l.o.g. n ≥ d)

• If we have n = 10 million images with 200× 200× 3 = 120, 000
pixel values each, runtime is 1.5× 1017 operations!

• The worlds fastest super computers compute at ≈ 100
petaFLOPS = 1017 FLOPS (floating point operations per second).

• This is a relatively easy task for them – but no one else.

6

n.it#dxYdn(xd)
-

I - x ÷ ¥ ¥

Expiateiii. if:$

Computing the SVD

Basic Algorithm: To compute the SVD of full-rank X ∈ Rn×d,
X = UΣVT:

• Compute XTX – O(nd2) runtime.

• Find eigendecomposition XTX = VΛVT – O(d3) runtime.

• Compute L = XV – O(nd2) runtime. Note that L = UΣ.

• Set σi = ‖Li‖2 and Ui = Li/‖Li‖2. – O(nd) runtime.

Total runtime: O(nd2 + d3) = O(nd2) (assume w.l.o.g. n ≥ d)

• If we have n = 10 million images with 200× 200× 3 = 120, 000
pixel values each, runtime is 1.5× 1017 operations!

• The worlds fastest super computers compute at ≈ 100
petaFLOPS = 1017 FLOPS (floating point operations per second).

• This is a relatively easy task for them – but no one else.

6

I
±

Computing the SVD

Basic Algorithm: To compute the SVD of full-rank X ∈ Rn×d,
X = UΣVT:

• Compute XTX – O(nd2) runtime.

• Find eigendecomposition XTX = VΛVT – O(d3) runtime.

• Compute L = XV – O(nd2) runtime. Note that L = UΣ.

• Set σi = ‖Li‖2 and Ui = Li/‖Li‖2. – O(nd) runtime.

Total runtime: O(nd2 + d3) = O(nd2) (assume w.l.o.g. n ≥ d)

• If we have n = 10 million images with 200× 200× 3 = 120, 000
pixel values each, runtime is 1.5× 1017 operations!

• The worlds fastest super computers compute at ≈ 100
petaFLOPS = 1017 FLOPS (floating point operations per second).

• This is a relatively easy task for them – but no one else.

6

-
x t s u t n < d stmt by competeXxt

let U w ①Jered.rso f
Xxt

exvsusvtv.ua - O(rid)

⇐

Faster Algorithms

To speed up SVD computation we will take advantage of the fact that
we typically only care about computing the top (or bottom) k
singular vectors of a matrix X ∈ Rn×d for k & d.

• Suffices to compute Vk ∈ Rd×k and then compute UkΣk = XVk.

• Use an iterative algorithm to compute an approximation to the
top k singular vectors Vk (the top k eigenvectors of XTX.)

• Runtime will be roughly O(ndk) instead of O(nd2).

Sparse (iterative) vs. Direct Method. svd vs. svds.

7

EVY]

-

[
- X U E OKEK

- a -

Andy

Faster Algorithms

To speed up SVD computation we will take advantage of the fact that
we typically only care about computing the top (or bottom) k
singular vectors of a matrix X ∈ Rn×d for k & d.

• Suffices to compute Vk ∈ Rd×k and then compute UkΣk = XVk.

• Use an iterative algorithm to compute an approximation to the
top k singular vectors Vk (the top k eigenvectors of XTX.)

• Runtime will be roughly O(ndk) instead of O(nd2).

Sparse (iterative) vs. Direct Method. svd vs. svds.

7

show roastituntile

= . .

eig cigs

Power Method

Power Method: The most fundamental iterative method for
approximate SVD/eigendecomposition. Applies to computing k = 1
eigenvectors, but can be generalized to larger k.

Goal: Given symmetric A ∈ Rd×d, with eigendecomposition A = VΛVT,
find "z ≈ "v1. I.e., the top eigenvector of A.

• Initialize: Choose "z(0) randomly. E.g. "z(0)(i) ∼ N (0, 1).

• For i = 1, . . . , t

• "z(i) := A ·"z(i−1)

• "zi := !z(i)
‖!z(i)‖2

• Return "zt

8

suds

X t x -

-

-

-

Power Method

Power Method: The most fundamental iterative method for
approximate SVD/eigendecomposition. Applies to computing k = 1
eigenvectors, but can be generalized to larger k.

Goal: Given symmetric A ∈ Rd×d, with eigendecomposition A = VΛVT,
find "z ≈ "v1. I.e., the top eigenvector of A.

• Initialize: Choose "z(0) randomly. E.g. "z(0)(i) ∼ N (0, 1).

• For i = 1, . . . , t

• "z(i) := A ·"z(i−1)

• "zi := !z(i)
‖!z(i)‖2

• Return "zt

8

M i l i t -
F i l - flit's✓ ,
- zitsAt""=Av,s i l l y

zit"xµ Ei's,¥¥wI¥,'"Slo-5

Power Method

9

2 N
A-412

§,¥µµ"
*Al

-V,

Power Method

9

1141511121 (At" x p ,

¥#I÷÷÷÷÷.
In-dal
i n

Power Method

9

Power Method Analysis

Power method:

• Initialize: Choose "z(0) randomly. E.g. "z(0)(i) ∼ N (0, 1).

• For i = 1, . . . , t
• "z(i) := A ·"z(i−1)

• "zi := !z(i)
‖!z(i)‖2

• Return "zt.

Theoretically equivalent to:

• For i = 1, . . . , t
• "z(i) := A ·"z(i−1)

• "zi := !z(i)
‖!z(i)‖2

.

• Return "zt.

10

Power Method Analysis

Power method:

• Initialize: Choose "z(0) randomly. E.g. "z(0)(i) ∼ N (0, 1).

• For i = 1, . . . , t
• "z(i) := A ·"z(i−1)

• "zi := !z(i)
‖!z(i)‖2

• Return "zt.

Theoretically equivalent to:

• For i = 1, . . . , t
• "z(i) := A ·"z(i−1)

• "zi := !z(i)
‖!z(i)‖2

.

• Return "zt.

10

| ,
I]
"

P"'"" " "" " ^ ¥

=

Power Method Analysis

Write "z(0) in A’s eigenvector basis:

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd.

Update step: "z(i) = A ·"z(i−1) = VΛVT ·"z(i−1) (then normalize)

VT"z(0) =

ΛVT"z(0) =

"z(1) = VΛVT ·"z(0) =

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . !v1: top eigenvec-
tor, being computed,!z(i) : iterate at step i, converging to !v1.

11

-
d orthogonaleigenvector

Power Method Analysis

Write "z(0) in A’s eigenvector basis:

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd.

Update step: "z(i) = A ·"z(i−1) = VΛVT ·"z(i−1) (then normalize)

VT"z(0) =

ΛVT"z(0) =

"z(1) = VΛVT ·"z(0) =

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . !v1: top eigenvec-
tor, being computed,!z(i) : iterate at step i, converging to !v1.

11

→

-

e÷÷¥'Ii:$. "if?m±⇒,
vile,V ,t . . (dvd)

- [' '¥11.11111 = avivitavivit..

§!-§µ!):J ,'A ,C ,+I n l e t . . .

Power Method Analysis

Claim 1 : Writing "z(0) = c1"v1 + c2"v2 + . . .+ cd"vd,

"z(1) = c1 · λ1"v1 + c2 · λ2"v2 + . . .+ cd · λd"vd.

"z(2) = A"z(1) = VΛVT"z(1) =

Claim 2:

"z(t) = c1 · λt
1"v1 + c2 · λt

2"v2 + . . .+ cd · λt
d"vd.

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . !v1: top eigenvec-
tor, being computed,!z(i) : iterate at step i, converging to !v1.

12

#

Power Method Analysis

Claim 1 : Writing "z(0) = c1"v1 + c2"v2 + . . .+ cd"vd,

"z(1) = c1 · λ1"v1 + c2 · λ2"v2 + . . .+ cd · λd"vd.

"z(2) = A"z(1) = VΛVT"z(1) =

Claim 2:

"z(t) = c1 · λt
1"v1 + c2 · λt

2"v2 + . . .+ cd · λt
d"vd.

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . !v1: top eigenvec-
tor, being computed,!z(i) : iterate at step i, converging to !v1.

12

dicta, X i a n

- axivitadivit...

Power Method Analysis

Claim 1 : Writing "z(0) = c1"v1 + c2"v2 + . . .+ cd"vd,

"z(1) = c1 · λ1"v1 + c2 · λ2"v2 + . . .+ cd · λd"vd.

"z(2) = A"z(1) = VΛVT"z(1) =

Claim 2:

"z(t) = c1 · λt
1"v1 + c2 · λt

2"v2 + . . .+ cd · λt
d"vd.

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . !v1: top eigenvec-
tor, being computed,!z(i) : iterate at step i, converging to !v1.

12

NtI..÷eo⇒÷
÷÷¥O÷¥

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

When will convergence be slow?

13

÷

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

When will convergence be slow?

13

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 1

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

When will convergence be slow?

13

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 2

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

When will convergence be slow?

13

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 3

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1

When will convergence be slow?

13

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 4

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1

When will convergence be slow?

13

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1

When will convergence be slow?

13

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 6

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1

When will convergence be slow?

13

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 7

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1

When will convergence be slow?

13

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 8

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

When will convergence be slow?

13

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 9

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

When will convergence be slow?

13

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 10

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

When will convergence be slow?

13

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 11

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

When will convergence be slow?

13

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 12

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

When will convergence be slow?

13

Power Method Convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v1 much larger, relative to the other
components.

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 13

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

When will convergence be slow? 13

M
M

c s

Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1,λ2 = .99,λ3 = .9,λ4 = .8, . . .

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

14

Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1,λ2 = .99,λ3 = .9,λ4 = .8, . . .

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

14

- - -

Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1,λ2 = .99,λ3 = .9,λ4 = .8, . . .

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 1

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

14

Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1,λ2 = .99,λ3 = .9,λ4 = .8, . . .

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 2

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

14

Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1,λ2 = .99,λ3 = .9,λ4 = .8, . . .

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 3

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

14

Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1,λ2 = .99,λ3 = .9,λ4 = .8, . . .

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 4

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

14

Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1,λ2 = .99,λ3 = .9,λ4 = .8, . . .

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

14

Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1,λ2 = .99,λ3 = .9,λ4 = .8, . . .

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 6

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

14

Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1,λ2 = .99,λ3 = .9,λ4 = .8, . . .

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 7

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

14

Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1,λ2 = .99,λ3 = .9,λ4 = .8, . . .

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 8

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

14

Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1,λ2 = .99,λ3 = .9,λ4 = .8, . . .

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 9

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

14

Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1,λ2 = .99,λ3 = .9,λ4 = .8, . . .

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 10

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

14

Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1,λ2 = .99,λ3 = .9,λ4 = .8, . . .

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 11

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

14

Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1,λ2 = .99,λ3 = .9,λ4 = .8, . . .

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 12

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

14

Power Method Slow Convergence

Slow Case: A has eigenvalues: λ1 = 1,λ2 = .99,λ3 = .9,λ4 = .8, . . .

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Iteration 13

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

14

- -

AH"
±

A B
A t

I

Power Method Convergence Rate

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1| .

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t for δ > 0?

|λ2|t = (1− γ)t · |λ1|t

= (1− γ)1/γ·γt · |λ1|t

≤ e−γt · |λ1|t

So it suffices to set γt = ln(δ/γ). Or t = ln(δ/γ)
γ .

How small must we set δ to ensure that c1λt
1 dominates all other

components and so "z(t) is very close to "v1?

!v1: top eigenvector, being computed, !z(i) : iterate at step i, converging to !v1.
λ1,λ2, . . .λn : eigenvalues of A, γ = |λ1|−|λ2|

|λ1|
: eigengap controlling conver-

gence rate

15

1 ¥

- - -
F i s h

Power Method Convergence Rate

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1| .

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t for δ > 0?
|λ2|t = (1− γ)t · |λ1|t

= (1− γ)1/γ·γt · |λ1|t

≤ e−γt · |λ1|t

So it suffices to set γt = ln(δ/γ). Or t = ln(δ/γ)
γ .

How small must we set δ to ensure that c1λt
1 dominates all other

components and so "z(t) is very close to "v1?

!v1: top eigenvector, being computed, !z(i) : iterate at step i, converging to !v1.
λ1,λ2, . . .λn : eigenvalues of A, γ = |λ1|−|λ2|

|λ1|
: eigengap controlling conver-

gence rate

15

T
- s

Power Method Convergence Rate

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1| .

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t for δ > 0?
|λ2|t = (1− γ)t · |λ1|t

= (1− γ)1/γ·γt · |λ1|t

≤ e−γt · |λ1|t

So it suffices to set γt = ln(δ/γ). Or t = ln(δ/γ)
γ .

How small must we set δ to ensure that c1λt
1 dominates all other

components and so "z(t) is very close to "v1?

!v1: top eigenvector, being computed, !z(i) : iterate at step i, converging to !v1.
λ1,λ2, . . .λn : eigenvalues of A, γ = |λ1|−|λ2|

|λ1|
: eigengap controlling conver-

gence rate

15

O
t=Yy.Y t

Power Method Convergence Rate

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1| .

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t for δ > 0?
|λ2|t = (1− γ)t · |λ1|t

= (1− γ)1/γ·γt · |λ1|t

≤ e−γt · |λ1|t

So it suffices to set γt = ln(δ/γ). Or t = ln(δ/γ)
γ .

How small must we set δ to ensure that c1λt
1 dominates all other

components and so "z(t) is very close to "v1?

!v1: top eigenvector, being computed, !z(i) : iterate at step i, converging to !v1.
λ1,λ2, . . .λn : eigenvalues of A, γ = |λ1|−|λ2|

|λ1|
: eigengap controlling conver-

gence rate

15

'SS

Power Method Convergence Rate

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1| .

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t for δ > 0?
|λ2|t = (1− γ)t · |λ1|t

= (1− γ)1/γ·γt · |λ1|t

≤ e−γt · |λ1|t

So it suffices to set γt = ln(δ/γ). Or t = ln(δ/γ)
γ .

How small must we set δ to ensure that c1λt
1 dominates all other

components and so "z(t) is very close to "v1?

!v1: top eigenvector, being computed, !z(i) : iterate at step i, converging to !v1.
λ1,λ2, . . .λn : eigenvalues of A, γ = |λ1|−|λ2|

|λ1|
: eigengap controlling conver-

gence rate

15

- •
'"m"

t : -1¥) -

Power Method Convergence Rate

"z(0) = c1"v1 + c2"v2 + . . .+ cd"vd =⇒ "z(t) = c1λt
1"v1 + c2λt

2"v2 + . . .+ cdλt
d"vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1| .

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t for δ > 0?
|λ2|t = (1− γ)t · |λ1|t

= (1− γ)1/γ·γt · |λ1|t

≤ e−γt · |λ1|t

So it suffices to set γt = ln(δ/γ). Or t = ln(δ/γ)
γ .

How small must we set δ to ensure that c1λt
1 dominates all other

components and so "z(t) is very close to "v1?

!v1: top eigenvector, being computed, !z(i) : iterate at step i, converging to !v1.
λ1,λ2, . . .λn : eigenvalues of A, γ = |λ1|−|λ2|

|λ1|
: eigengap controlling conver-

gence rate

15

"% %

-

Random Initialization

Claim: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1"v1 + c2"v2 + . . .+ cd"vd, with very high probability, for all i:

O(1/d2) ≤ |ci| ≤ O(log d)

Corollary:

max
j

∣∣∣∣
cj
c1

∣∣∣∣ ≤ O(d2 log d).

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . !v1: top eigenvec-
tor, being computed,!z(i) : iterate at step i, converging to !v1.

16

[
N'co,D

-

÷¥o-

Random Initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1"v1 + c2"v2 + . . .+ cd"vd, with very high probability,
maxj

∣∣∣ cjc1
∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1| , and t = ln(1/δ)

γ ,
∣∣∣λ

t
i

λt
1

∣∣∣ ≤ δ for all i.

"z(t) :=
c1λt

1"v1 + . . .+ cdλt
d"vd

‖c1λt
1"v1 + . . .+ cdλt

d"vd‖2

=⇒

‖"z(t) −"v1‖2 ≤
∥∥∥∥
c1λt

1"v1 + . . .+ cdλt
d"vd

‖c1λt
1"v1‖2

−"v1
∥∥∥∥
2

=

∥∥∥∥
c2λt

2
c1λt

1
"v2 + . . .+

cdλt
d

λt
1
"vd

∥∥∥∥
2
=

∣∣∣∣
c2λt

2
c1λt

1

∣∣∣∣+ . . .+

∣∣∣∣
cdλt

d
λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d.

Setting δ = O
(

ε
d3 log d

)
gives ‖"z(t) −"v1‖2 ≤ ε.

A ∈ Rd×d : input with eigenvalues λ1 . . . ,λd and eigenvectors !v1, . . . ,!vd . !z(i) :
iterate at step i. c1, . . . , cd : coefficients of!z(0) in the eigenvector basis. 17

= -

Random Initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1"v1 + c2"v2 + . . .+ cd"vd, with very high probability,
maxj

∣∣∣ cjc1
∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1| , and t = ln(1/δ)

γ ,
∣∣∣λ

t
i

λt
1

∣∣∣ ≤ δ for all i.

"z(t) :=
c1λt

1"v1 + . . .+ cdλt
d"vd

‖c1λt
1"v1 + . . .+ cdλt

d"vd‖2

=⇒

‖"z(t) −"v1‖2 ≤
∥∥∥∥
c1λt

1"v1 + . . .+ cdλt
d"vd

‖c1λt
1"v1‖2

−"v1
∥∥∥∥
2

=

∥∥∥∥
c2λt

2
c1λt

1
"v2 + . . .+

cdλt
d

λt
1
"vd

∥∥∥∥
2
=

∣∣∣∣
c2λt

2
c1λt

1

∣∣∣∣+ . . .+

∣∣∣∣
cdλt

d
λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d.

Setting δ = O
(

ε
d3 log d

)
gives ‖"z(t) −"v1‖2 ≤ ε.

A ∈ Rd×d : input with eigenvalues λ1 . . . ,λd and eigenvectors !v1, . . . ,!vd . !z(i) :
iterate at step i. c1, . . . , cd : coefficients of!z(0) in the eigenvector basis. 17

-

Random Initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1"v1 + c2"v2 + . . .+ cd"vd, with very high probability,
maxj

∣∣∣ cjc1
∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1| , and t = ln(1/δ)

γ ,
∣∣∣λ

t
i

λt
1

∣∣∣ ≤ δ for all i.

"z(t) :=
c1λt

1"v1 + . . .+ cdλt
d"vd

‖c1λt
1"v1 + . . .+ cdλt

d"vd‖2
=⇒

‖"z(t) −"v1‖2 ≤
∥∥∥∥
c1λt

1"v1 + . . .+ cdλt
d"vd

‖c1λt
1"v1‖2

−"v1
∥∥∥∥
2

=

∥∥∥∥
c2λt

2
c1λt

1
"v2 + . . .+

cdλt
d

λt
1
"vd

∥∥∥∥
2
=

∣∣∣∣
c2λt

2
c1λt

1

∣∣∣∣+ . . .+

∣∣∣∣
cdλt

d
λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d.

Setting δ = O
(

ε
d3 log d

)
gives ‖"z(t) −"v1‖2 ≤ ε.

A ∈ Rd×d : input with eigenvalues λ1 . . . ,λd and eigenvectors !v1, . . . ,!vd . !z(i) :
iterate at step i. c1, . . . , cd : coefficients of!z(0) in the eigenvector basis. 17

0 0 0

I

Random Initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1"v1 + c2"v2 + . . .+ cd"vd, with very high probability,
maxj

∣∣∣ cjc1
∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1| , and t = ln(1/δ)

γ ,
∣∣∣λ

t
i

λt
1

∣∣∣ ≤ δ for all i.

"z(t) :=
c1λt

1"v1 + . . .+ cdλt
d"vd

‖c1λt
1"v1 + . . .+ cdλt

d"vd‖2
=⇒

‖"z(t) −"v1‖2 ≤
∥∥∥∥
c1λt

1"v1 + . . .+ cdλt
d"vd

‖c1λt
1"v1‖2

−"v1
∥∥∥∥
2

=

∥∥∥∥
c2λt

2
c1λt

1
"v2 + . . .+

cdλt
d

λt
1
"vd

∥∥∥∥
2

=

∣∣∣∣
c2λt

2
c1λt

1

∣∣∣∣+ . . .+

∣∣∣∣
cdλt

d
λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d.

Setting δ = O
(

ε
d3 log d

)
gives ‖"z(t) −"v1‖2 ≤ ε.

A ∈ Rd×d : input with eigenvalues λ1 . . . ,λd and eigenvectors !v1, . . . ,!vd . !z(i) :
iterate at step i. c1, . . . , cd : coefficients of!z(0) in the eigenvector basis. 17

O Q Q
e -

Random Initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1"v1 + c2"v2 + . . .+ cd"vd, with very high probability,
maxj

∣∣∣ cjc1
∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1| , and t = ln(1/δ)

γ ,
∣∣∣λ

t
i

λt
1

∣∣∣ ≤ δ for all i.

"z(t) :=
c1λt

1"v1 + . . .+ cdλt
d"vd

‖c1λt
1"v1 + . . .+ cdλt

d"vd‖2
=⇒

‖"z(t) −"v1‖2 ≤
∥∥∥∥
c1λt

1"v1 + . . .+ cdλt
d"vd

‖c1λt
1"v1‖2

−"v1
∥∥∥∥
2

=

∥∥∥∥
c2λt

2
c1λt

1
"v2 + . . .+

cdλt
d

λt
1
"vd

∥∥∥∥
2
=

∣∣∣∣
c2λt

2
c1λt

1

∣∣∣∣+ . . .+

∣∣∣∣
cdλt

d
λt
1

∣∣∣∣

≤ δ · O(d2 log d) · d.

Setting δ = O
(

ε
d3 log d

)
gives ‖"z(t) −"v1‖2 ≤ ε.

A ∈ Rd×d : input with eigenvalues λ1 . . . ,λd and eigenvectors !v1, . . . ,!vd . !z(i) :
iterate at step i. c1, . . . , cd : coefficients of!z(0) in the eigenvector basis. 17

Random Initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1"v1 + c2"v2 + . . .+ cd"vd, with very high probability,
maxj

∣∣∣ cjc1
∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1| , and t = ln(1/δ)

γ ,
∣∣∣λ

t
i

λt
1

∣∣∣ ≤ δ for all i.

"z(t) :=
c1λt

1"v1 + . . .+ cdλt
d"vd

‖c1λt
1"v1 + . . .+ cdλt

d"vd‖2
=⇒

‖"z(t) −"v1‖2 ≤
∥∥∥∥
c1λt

1"v1 + . . .+ cdλt
d"vd

‖c1λt
1"v1‖2

−"v1
∥∥∥∥
2

=

∥∥∥∥
c2λt

2
c1λt

1
"v2 + . . .+

cdλt
d

λt
1
"vd

∥∥∥∥
2
=

∣∣∣∣
c2λt

2
c1λt

1

∣∣∣∣+ . . .+

∣∣∣∣
cdλt

d
λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d.

Setting δ = O
(

ε
d3 log d

)
gives ‖"z(t) −"v1‖2 ≤ ε.

A ∈ Rd×d : input with eigenvalues λ1 . . . ,λd and eigenvectors !v1, . . . ,!vd . !z(i) :
iterate at step i. c1, . . . , cd : coefficients of!z(0) in the eigenvector basis. 17

'§ - -

Random Initialization

Claim 1: When z(0) is chosen with random Gaussian entries, writing
z(0) = c1"v1 + c2"v2 + . . .+ cd"vd, with very high probability,
maxj

∣∣∣ cjc1
∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1| , and t = ln(1/δ)

γ ,
∣∣∣λ

t
i

λt
1

∣∣∣ ≤ δ for all i.

"z(t) :=
c1λt

1"v1 + . . .+ cdλt
d"vd

‖c1λt
1"v1 + . . .+ cdλt

d"vd‖2
=⇒

‖"z(t) −"v1‖2 ≤
∥∥∥∥
c1λt

1"v1 + . . .+ cdλt
d"vd

‖c1λt
1"v1‖2

−"v1
∥∥∥∥
2

=

∥∥∥∥
c2λt

2
c1λt

1
"v2 + . . .+

cdλt
d

λt
1
"vd

∥∥∥∥
2
=

∣∣∣∣
c2λt

2
c1λt

1

∣∣∣∣+ . . .+

∣∣∣∣
cdλt

d
λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d.

Setting δ = O
(

ε
d3 log d

)
gives ‖"z(t) −"v1‖2 ≤ ε.

A ∈ Rd×d : input with eigenvalues λ1 . . . ,λd and eigenvectors !v1, . . . ,!vd . !z(i) :
iterate at step i. c1, . . . , cd : coefficients of!z(0) in the eigenvector basis. 17

T

=

Power Method Theorem

Theorem (Basic Power Method Convergence)
Let γ = |λ1|−|λ2|

|λ1| be the relative gap between the first and second
eigenvalues. If Power Method is initialized with a random Gaussian
vector "v(0) then, with high probability, after t = O

(
ln(d/ε)

γ

)
steps:

‖"z(t) −"v1‖2 ≤ ε.

Total runtime: O(t) matrix-vector multiplications. If A = XTX:

O
(
nnz(X) · ln(d/ε)

γ
·
)

= O
(
nd · ln(d/ε)

γ

)
.

How is ε dependence?

How is γ dependence?

18

-

① d?t

Power Method Theorem

Theorem (Basic Power Method Convergence)
Let γ = |λ1|−|λ2|

|λ1| be the relative gap between the first and second
eigenvalues. If Power Method is initialized with a random Gaussian
vector "v(0) then, with high probability, after t = O

(
ln(d/ε)

γ

)
steps:

‖"z(t) −"v1‖2 ≤ ε.

Total runtime: O(t) matrix-vector multiplications. If A = XTX:

O
(
nnz(X) · ln(d/ε)

γ
·
)

= O
(
nd · ln(d/ε)

γ

)
.

How is ε dependence?

How is γ dependence?

18

Power Method Theorem

Theorem (Basic Power Method Convergence)
Let γ = |λ1|−|λ2|

|λ1| be the relative gap between the first and second
eigenvalues. If Power Method is initialized with a random Gaussian
vector "v(0) then, with high probability, after t = O

(
ln(d/ε)

γ

)
steps:

‖"z(t) −"v1‖2 ≤ ε.

Total runtime: O(t) matrix-vector multiplications. If A = XTX:

O
(
nnz(X) · ln(d/ε)

γ
·
)

= O
(
nd · ln(d/ε)

γ

)
.

How is ε dependence?

How is γ dependence?

18

krylov subspace methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need
t = O

(
ln(d/ε)√

γ

)
steps for the same guarantee.

Main Idea: Need to separate λ1 from λi for i ≥ 2.

• Power method: power up to λt
1 and λt

i .

• Krylov methods: apply a better degree t polynomial Tt(·) to the
eigenvalues to separate Tt(λ1) from Tt(λi).

• Still requires just t matrix vector multiplies. Why?

19

krylov subspace methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need
t = O

(
ln(d/ε)√

γ

)
steps for the same guarantee.

Main Idea: Need to separate λ1 from λi for i ≥ 2.

• Power method: power up to λt
1 and λt

i .

• Krylov methods: apply a better degree t polynomial Tt(·) to the
eigenvalues to separate Tt(λ1) from Tt(λi).

• Still requires just t matrix vector multiplies. Why?

19

krylov subspace methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need
t = O

(
ln(d/ε)√

γ

)
steps for the same guarantee.

Main Idea: Need to separate λ1 from λi for i ≥ 2.

• Power method: power up to λt
1 and λt

i .

• Krylov methods: apply a better degree t polynomial Tt(·) to the
eigenvalues to separate Tt(λ1) from Tt(λi).

• Still requires just t matrix vector multiplies. Why?

19

krylov subspace methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need
t = O

(
ln(d/ε)√

γ

)
steps for the same guarantee.

Main Idea: Need to separate λ1 from λi for i ≥ 2.

• Power method: power up to λt
1 and λt

i .

• Krylov methods: apply a better degree t polynomial Tt(·) to the
eigenvalues to separate Tt(λ1) from Tt(λi).

• Still requires just t matrix vector multiplies. Why?

19

krylov subspace methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need
t = O

(
ln(d/ε)√

γ

)
steps for the same guarantee.

Main Idea: Need to separate λ1 from λi for i ≥ 2.

• Power method: power up to λt
1 and λt

i .

• Krylov methods: apply a better degree t polynomial Tt(·) to the
eigenvalues to separate Tt(λ1) from Tt(λi).

• Still requires just t matrix vector multiplies. Why?

19

krylov subspace methods

vs.

Optimal ‘jump’ polynomial in general is given by a degree t
Chebyshev polynomial. Krylov methods find a polynomial
tuned to the input matrix that does at least as well.

20

generalizations to larger k

• Block Power Method (a.k.a. Simultaneous Iteration, Subspace
Iteration, or Orthogonal Iteration)

• Block Krylov methods

Runtime: O
(
ndk · ln(d/ε)√

γ

)

to accurately compute the top k singular vectors.

‘Gapless’ Runtime: O
(
ndk · ln(d/ε)√

ε

)

if you just want a set of vectors that gives an ε-optimal low-rank
approximation when you project onto them.

21

generalizations to larger k

• Block Power Method (a.k.a. Simultaneous Iteration, Subspace
Iteration, or Orthogonal Iteration)

• Block Krylov methods

Runtime: O
(
ndk · ln(d/ε)√

γ

)

to accurately compute the top k singular vectors.

‘Gapless’ Runtime: O
(
ndk · ln(d/ε)√

ε

)

if you just want a set of vectors that gives an ε-optimal low-rank
approximation when you project onto them.

21

Connection Between Random Walks,
Eigenvectors, and Power Method

(Bonus Material)

22

Connection to Random Walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random
from the neighbors of the current vertex.

23

Connection to Random Walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random
from the neighbors of the current vertex.

23

Connection to Random Walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random
from the neighbors of the current vertex.

23

Connection to Random Walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random
from the neighbors of the current vertex.

23

Connection to Random Walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random
from the neighbors of the current vertex.

23

Connection to Random Walks

Let "p(t) ∈ Rn have ith entry "p(t)
i = Pr(walk at node i at step t).

• Initialize: "p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= "zT"p(t−1)

where "z(j) = 1
degree(j) for all j ∈ neigh(i), "z(j) = 0 for all

j /∈ neigh(i).

• "z is the ith row of the right normalized adjacency matrix AD−1.

• "p(t) = AD−1"p(t−1)

= AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

"p(0)

24

Connection to Random Walks

Let "p(t) ∈ Rn have ith entry "p(t)
i = Pr(walk at node i at step t).

• Initialize: "p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= "zT"p(t−1)

where "z(j) = 1
degree(j) for all j ∈ neigh(i), "z(j) = 0 for all

j /∈ neigh(i).

• "z is the ith row of the right normalized adjacency matrix AD−1.

• "p(t) = AD−1"p(t−1)

= AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

"p(0)

24

Connection to Random Walks

Let "p(t) ∈ Rn have ith entry "p(t)
i = Pr(walk at node i at step t).

• Initialize: "p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= "zT"p(t−1)

where "z(j) = 1
degree(j) for all j ∈ neigh(i), "z(j) = 0 for all

j /∈ neigh(i).

• "z is the ith row of the right normalized adjacency matrix AD−1.

• "p(t) = AD−1"p(t−1)

= AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

"p(0)

24

Connection to Random Walks

Let "p(t) ∈ Rn have ith entry "p(t)
i = Pr(walk at node i at step t).

• Initialize: "p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= "zT"p(t−1)

where "z(j) = 1
degree(j) for all j ∈ neigh(i), "z(j) = 0 for all

j /∈ neigh(i).

• "z is the ith row of the right normalized adjacency matrix AD−1.

• "p(t) = AD−1"p(t−1)

= AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

"p(0)

24

Connection to Random Walks

Let "p(t) ∈ Rn have ith entry "p(t)
i = Pr(walk at node i at step t).

• Initialize: "p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= "zT"p(t−1)

where "z(j) = 1
degree(j) for all j ∈ neigh(i), "z(j) = 0 for all

j /∈ neigh(i).

• "z is the ith row of the right normalized adjacency matrix AD−1.

• "p(t) = AD−1"p(t−1)

= AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

"p(0)

24

Connection to Random Walks

Let "p(t) ∈ Rn have ith entry "p(t)
i = Pr(walk at node i at step t).

• Initialize: "p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= "zT"p(t−1)

where "z(j) = 1
degree(j) for all j ∈ neigh(i), "z(j) = 0 for all

j /∈ neigh(i).

• "z is the ith row of the right normalized adjacency matrix AD−1.

• "p(t) = AD−1"p(t−1)

= AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

"p(0)

24

Connection to Random Walks

Let "p(t) ∈ Rn have ith entry "p(t)
i = Pr(walk at node i at step t).

• Initialize: "p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1
degree(j)

= "zT"p(t−1)

where "z(j) = 1
degree(j) for all j ∈ neigh(i), "z(j) = 0 for all

j /∈ neigh(i).

• "z is the ith row of the right normalized adjacency matrix AD−1.

• "p(t) = AD−1"p(t−1) = AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

"p(0)

24

Random Walking as Power Method

Claim: After t steps, the probability that a random walk is at node i is
given by the ith entry of

"p(t) = AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

"p(0).

D−1/2"p(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2"p(0)).

• D−1/2"p(t) is exactly what would obtained by applying t/2
iterations of power method to D−1/2"p(0)!

• Will converge to the top eigenvector of the normalized
adjacency matrix D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to
converge to its stationary distribution (mixing time) is
dependent on the gap between the top two eigenvalues of
D−1/2AD−1/2. The spectral gap.

25

Random Walking as Power Method

Claim: After t steps, the probability that a random walk is at node i is
given by the ith entry of

"p(t) = AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

"p(0).

D−1/2"p(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2"p(0)).

• D−1/2"p(t) is exactly what would obtained by applying t/2
iterations of power method to D−1/2"p(0)!

• Will converge to the top eigenvector of the normalized
adjacency matrix D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to
converge to its stationary distribution (mixing time) is
dependent on the gap between the top two eigenvalues of
D−1/2AD−1/2. The spectral gap.

25

Random Walking as Power Method

Claim: After t steps, the probability that a random walk is at node i is
given by the ith entry of

"p(t) = AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

"p(0).

D−1/2"p(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2"p(0)).

• D−1/2"p(t) is exactly what would obtained by applying t/2
iterations of power method to D−1/2"p(0)!

• Will converge to the top eigenvector of the normalized
adjacency matrix D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to
converge to its stationary distribution (mixing time) is
dependent on the gap between the top two eigenvalues of
D−1/2AD−1/2. The spectral gap.

25

Random Walking as Power Method

Claim: After t steps, the probability that a random walk is at node i is
given by the ith entry of

"p(t) = AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

"p(0).

D−1/2"p(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2"p(0)).

• D−1/2"p(t) is exactly what would obtained by applying t/2
iterations of power method to D−1/2"p(0)!

• Will converge to the top eigenvector of the normalized
adjacency matrix D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to
converge to its stationary distribution (mixing time) is
dependent on the gap between the top two eigenvalues of
D−1/2AD−1/2. The spectral gap.

25

Random Walking as Power Method

Claim: After t steps, the probability that a random walk is at node i is
given by the ith entry of

"p(t) = AD−1AD−1 . . .AD−1
︸ ︷︷ ︸

t times

"p(0).

D−1/2"p(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2"p(0)).

• D−1/2"p(t) is exactly what would obtained by applying t/2
iterations of power method to D−1/2"p(0)!

• Will converge to the top eigenvector of the normalized
adjacency matrix D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to
converge to its stationary distribution (mixing time) is
dependent on the gap between the top two eigenvalues of
D−1/2AD−1/2. The spectral gap. 25

