COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2023. Lecture 21 See Piazza post about upcoming schedule information.

- No quiz due this week.
- Problem Set 4 is due 12/1.
- No class Thursday.
- Office hours next Monday at 10am in CS234.
- No class next Tuesday
- Class over Zoom next Thursday 11/30 at 10am. Office hours over Zoom at 9am. See Piazza for Zoom link.
- Second Linear Algebra Review Session on Monday 12/4 at 3pm in CS140.

Summary

Last Few Classes: Spectral Graph Partitioning

- Focus on separating graphs with small but relatively balanced cuts.
- Connection to second smallest eigenvector of graph Laplacian.
- Provable guarantees for stochastic block model.
- Expectation analysis in class. See slides for full analysis.

This Class: Computing the SVD/eigendecomposition.

- Efficient algorithms for SVD/eigendecomposition.
- Iterative methods: power method, Krylov subspace methods.
- High level: a glimpse into fast methods for linear algebraic computation, which are workhorses behind data science.

Quiz Question

We have talked about the eigendecomposition and SVD as ways to compress data, to embed entities like words and documents, to compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on large datasets?

Computing the SVD

Basic Algorithm: To compute the SVD of full-rank $X \in \mathbb{R}^{n \times d}$ $X = \bigcup \Sigma V^{T}$: • Compute $\mathbf{X}^{\mathsf{T}}\mathbf{X} - O(nd^2)$ runtime. • Find eigendecomposition $X^T X = V \Lambda V^T - O(d^3)$ runtime. X= UZ1 • Compute $L = XV - O(nd^2)$ runtime. Note that $L = U\Sigma$. • Set $\sigma_i = \|\mathbf{L}_i\|_2$ and $\mathbf{U}_i = \mathbf{L}_i / \|\mathbf{L}_i\|_2$. – O(nd) runtime. Total runtime: $O(\underline{nd^2} + d^3) = O(\underline{nd^2})$ (assume w.l.o.g. $n \ge d$) = [x'x] $\begin{vmatrix} J_1 & J_2 & J_3 \\ J_1 & J_2 & J_3 \end{vmatrix} = \begin{vmatrix} J_1 & J_1 \\ J_1 & J_2 \\ J_1 & J_2 \end{vmatrix}$

Computing the SVD

Basic Algorithm: To compute the SVD of full-rank $X \in \mathbb{R}^{n \times d}$, $X = U \Sigma V^{T}$:

- Compute $\mathbf{X}^{\mathsf{T}}\mathbf{X} O(nd^2)$ runtime.
- Find eigendecomposition $X^T X = V \Lambda V^T O(d^3)$ runtime.
- Compute $L = XV O(nd^2)$ runtime. Note that $L = U\Sigma$.
- Set $\sigma_i = \|\mathbf{L}_i\|_2$ and $\mathbf{U}_i = \mathbf{L}_i / \|\mathbf{L}_i\|_2$. O(nd) runtime. Total runtime: $O(nd^2 + d^3) = O(nd^2)$ (assume w.l.o.g. $n \ge d$)
- If we have n = 10 million images with $200 \times 200 \times 3 = 120,000^{-1}$ pixel values each, runtime is 1.5×10^{17} operations!

Computing the SVD

Basic Algorithm: To compute the SVD of full-rank $X \in \mathbb{R}^{n \times d}$, $X \equiv U\Sigma V^{T}$, $\cap \leq d$ stat by compute XX^{T} $X^{T} = V \equiv V^{T}$, $\cap \leq d$ stat by compute XX^{T} · Compute $X^{T}X - O(nd^{2})$ runtime.

• Find eigendecomposition $\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T - O(d^3)$ runtime. • Compute $\mathbf{L} = \underline{X} \mathbf{V} - O(nd^2)$ runtime. Note that $\mathbf{L} = \mathbf{U} \mathbf{\Sigma}$.

• Set $\sigma_i = \|\mathbf{L}_i\|_2$ and $\mathbf{U}_i = \mathbf{L}_i / \|\mathbf{L}_i\|_2$. – O(nd) runtime.

Total runtime: $O(nd^2 + d^3) = O(nd^2)$ (assume w.l.o.g. $n \ge d$)

- If we have n = 10 million images with $200 \times 200 \times 3 = 120,000$ pixel values each, runtime is 1.5×10^{17} operations!
- The worlds fastest super computers compute at \approx 100 petaFLOPS = 10^{17} FLOPS (floating point operations per second).
- $\cdot\,$ This is a relatively easy task for them but no one else.

 $(n^2 J)$

To speed up SVD computation we will take advantage of the fact that we typically only care about computing the top (or bottom) k singular vectors of a matrix $X \in \mathbb{R}^{n \times d}$ for $k \ll d$.

- Suffices to compute $\underline{V}_k \in \mathbb{R}^{d \times k}$ and then compute $U_k \Sigma_k = XV_k$. Use an *iterative algorithm* to compute an *approximation* to the top *k* singular vectors V_k (the top *k* eigenvectors of $X^T X$.)
- Runtime will be roughly O(ndk) instead of $O(nd^2)$.

To speed up SVD computation we will take advantage of the fact that we typically only care about computing the top (or bottom) k singular vectors of a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ for $k \ll d$.

- Suffices to compute $V_k \in \mathbb{R}^{d \times k}$ and then compute $U_k \Sigma_k = XV_k$.
- Use an *iterative algorithm* to compute an *approximation* to the top k singular vectors V_k (the top k eigenvectors of $X^T X$.)
- Runtime will be roughly O(ndk) instead of $O(nd^2)$.

Sparse (iterative) vs. Direct Method. svd vs. svds.

Power Method: The most fundamental iterative method for approximate SVD/eigendecomposition. Applies to computing k = 1eigenvectors, but can be generalized to larger k. X^TX **Goal:** Given symmetric $\mathbf{A} \in \mathbb{R}^{d \times d}$, with eigendecomposition $\mathbf{A} = \mathbf{V}\mathbf{A}\mathbf{V}^{T}$, find $\vec{z} \approx \vec{v_{1}}$. I.e., the top eigenvector of \mathbf{A} . **Power Method:** The most fundamental iterative method for approximate SVD/eigendecomposition. Applies to computing k = 1 eigenvectors, but can be generalized to larger k.

Goal: Given symmetric $\mathbf{A} \in \mathbb{R}^{d \times d}$, with eigendecomposition $\mathbf{A} = \mathbf{V} \mathbf{A} \mathbf{V}^{\mathsf{T}}$. find $\vec{z} \approx \vec{v}_1$. I.e., the top eigenvector of **A**. $|V_1|_{z} = |$ • Initialize: Choose $\vec{z}^{(0)}$ randomly. E.g. $\vec{z}^{(0)}(i) \sim \mathcal{N}(0, 1)$. • For $i = 1, \dots, t$ $Z^{(i)} = \sqrt{1}$ $\cdot \vec{z}^{(i)} := \mathbf{A} \cdot \vec{z}^{(i-1)}$ $z^{(i)} = A z^{(i-v)} = A V_1 = \lambda_1 \cdot V_1$ • Return \vec{z}_{t} $t^{(i)} = \frac{1}{12^{(i)}} = \frac{1}{12^{(i)}} = \frac{1}{12^{(i)}} = \frac{1}{12^{(i)}} = \frac{1}{12^{(i)}} = 1$

Power method:

- Initialize: Choose $\vec{z}^{(0)}$ randomly. E.g. $\vec{z}^{(0)}(i) \sim \mathcal{N}(0, 1)$.
- For i = 1, ..., t
 - $\vec{z}^{(i)} := \mathbf{A} \cdot \vec{z}^{(i-1)}$ • $\vec{z}_i := \frac{\vec{z}^{(i)}}{\|\vec{z}^{(i)}\|_2}$
- Return \vec{z}_t .

Power method:

T

• Initialize: Choose $\vec{z}^{(0)}$ randomly. E.g. $\vec{z}^{(0)}(i) \sim \mathcal{N}(0, 1)$.

• For
$$i = 1, ..., t$$

• $\vec{z}^{(i)} := \mathbf{A} \cdot \vec{z}^{(i-1)}$
• $\vec{z}_i := \frac{\vec{z}^{(i)}}{\|\vec{z}^{(i)}\|_2}$
• Return \vec{z}_t .
heoretically equivalent to:
• For $i = 1, ..., t$
• $\vec{z}^{(i)} := \mathbf{A} \cdot \vec{z}^{(i-1)}$
• $\vec{z}_i := \frac{\vec{z}^{(i)}}{\|\vec{z}^{(i)}\|_2}$.
• Return \vec{z}_t .

Write $\vec{z}^{(0)}$ in \mathbf{A} 's eigenvector basis: d orthogonal egenvector

$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d.$

 $A \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $A = V\Lambda V^{T}$. \vec{v}_{1} : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step *i*, converging to \vec{v}_{1} .

Write $\vec{z}^{(0)}$ in **A**'s eigenvector basis: $\vec{z}^{(0)} = C_1 \vec{V}_1 + C_2 \vec{V}_2 + \ldots + C_d \vec{V}_d.$ Update step: $\vec{z}^{(i)} = \mathbf{A} \cdot \vec{z}^{(i-1)} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}} \cdot \vec{z}^{(i-1)}$ (then normalize) 122 221 $\sqrt{T}(t^{\circ})$ $\frac{\mathbf{V}^{\mathsf{T}}\overline{\mathbf{Z}}^{(0)}}{\prod_{i=1}^{n}} \left[\begin{array}{c} \mathbf{V}_{i}^{\mathsf{T}} \\ \mathbf{V}_{i}^{\mathsf{T}} \end{array} \right] \left[\mathbf{z}^{(0)} \\ \mathbf{z}^{\mathsf{T}} \end{array} \right] = \left[\begin{array}{c} \mathbf{C}_{i} \\ \mathbf{C}_{i} \\ \mathbf{z}^{\mathsf{T}} \end{array} \right]$ $= \sqrt{T} \left(C_1 \vee_1 + C_2 \vee_2 + \dots + C_{2} \vee_{2} \right)$ $V_1^{\overline{I}}(C_1V_1+\cdots+C_4V_4)$ $\mathbf{\Lambda}\mathbf{V}^{\mathsf{T}}\overline{\mathbf{z}}^{(0)} = \begin{pmatrix} \lambda_{1} & \lambda_{2} \\ \vdots & \ddots & \lambda_{2} \end{pmatrix} \begin{pmatrix} \mathsf{C}_{1} \\ \vdots \\ \mathsf{C}_{4} \end{pmatrix} = \begin{pmatrix} \lambda_{1} \mathsf{C}_{1} \\ \vdots \\ \lambda_{3} \mathsf{C}_{4} \end{pmatrix}$ $= C_1 V_1 V_1 + C_2 V_1 V_2 + ...$ $\vec{z}^{(1)} = \mathbf{V}\mathbf{A}\mathbf{V}^{\mathsf{T}} \cdot \vec{z}^{(0)} = \int_{\mathcal{V}_{1}, \dots, \mathcal{V}_{d}} \left[\begin{bmatrix} \lambda_{1} c_{1} \\ \vdots \\ \nu_{1} \end{bmatrix} \begin{bmatrix} \lambda_{1} c_{1} \\ \vdots \\ \ddots \end{bmatrix} \begin{bmatrix} \lambda_{1} c_{1} \\ \vdots \\ \nu_{1} \end{bmatrix} \cdot \lambda_{1} c_{1} + \vec{\mathcal{V}}_{2} \lambda_{2} c_{2} + \dots \end{bmatrix}$

 $\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A} = \mathbf{V} \mathbf{A} \mathbf{V}^{\mathsf{T}}$. \vec{v}_1 : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step *i*, converging to \vec{v}_1 .

Claim 1: Writing $\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$,

$$\underline{\vec{z}^{(1)}} = c_1 \cdot \underline{\lambda_1} \vec{v}_1 + c_2 \cdot \underline{\lambda_2} \vec{v}_2 + \ldots + c_d \cdot \underline{\lambda_d} \vec{v}_d.$$

 $\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}}$. \vec{v}_1 : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step *i*, converging to \vec{v}_1 .

Claim 1: Writing $\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$,

$$\vec{z}^{(1)} = c_1 \cdot \lambda_1 \vec{v}_1 + c_2 \cdot \lambda_2 \vec{v}_2 + \ldots + c_d \cdot \lambda_d \vec{v}_d.$$

$$\lambda_1 \cdot c_1 \lambda_1 \qquad \lambda_2 \cdot c_2 \lambda_2$$

$$\vec{z}^{(2)} = A \vec{z}^{(1)} = V \Lambda V^T \vec{z}^{(1)} = c_1 \lambda_1^2 \vec{v}_1 + c_2 \lambda_2^2 \vec{v}_2 + \ldots - c_d \lambda_d^2 \vec{v}_d.$$

 $\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}}$. \vec{v}_1 : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step *i*, converging to \vec{v}_1 .

 $\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{T}$. \vec{v}_{1} : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step *i*, converging to \vec{v}_{1} .

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_1 much larger, relative to the other components.

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \ldots + c_d \lambda_d^t \vec{v}_d$$

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_1 much larger, relative to the other components.

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_1 much larger, relative to the other components.

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_1 much larger, relative to the other components.

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_1 much larger, relative to the other components.

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_1 much larger, relative to the other components.

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_1 much larger, relative to the other components.

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_1 much larger, relative to the other components.

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_1 much larger, relative to the other components.

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_1 much larger, relative to the other components.

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_1 much larger, relative to the other components.

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_1 much larger, relative to the other components.

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_1 much larger, relative to the other components.

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_1 much larger, relative to the other components.

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_1 much larger, relative to the other components.

Slow Case: A has eigenvalues: $\lambda_1 = 1, \lambda_2 = .99, \lambda_3 = .9, \lambda_4 = .8, \dots$

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \ldots + c_d \lambda_d^t \vec{v}_d$$

Slow Case: A has eigenvalues:
$$\lambda_1 = 1, \lambda_2 = .99, \lambda_3 = .9, \lambda_4 = .8, \dots$$

Slow Case: A has eigenvalues: $\lambda_1 = 1, \lambda_2 = .99, \lambda_3 = .9, \lambda_4 = .8, \dots$

Slow Case: A has eigenvalues: $\lambda_1 = 1, \lambda_2 = .99, \lambda_3 = .9, \lambda_4 = .8, \dots$

Slow Case: A has eigenvalues: $\lambda_1 = 1, \lambda_2 = .99, \lambda_3 = .9, \lambda_4 = .8, \dots$

Slow Case: A has eigenvalues: $\lambda_1 = 1, \lambda_2 = .99, \lambda_3 = .9, \lambda_4 = .8, \dots$

Slow Case: A has eigenvalues: $\lambda_1 = 1, \lambda_2 = .99, \lambda_3 = .9, \lambda_4 = .8, \dots$

Slow Case: A has eigenvalues: $\lambda_1 = 1, \lambda_2 = .99, \lambda_3 = .9, \lambda_4 = .8, \dots$

Slow Case: A has eigenvalues: $\lambda_1 = 1, \lambda_2 = .99, \lambda_3 = .9, \lambda_4 = .8, \dots$

Slow Case: A has eigenvalues: $\lambda_1 = 1, \lambda_2 = .99, \lambda_3 = .9, \lambda_4 = .8, \dots$

Slow Case: A has eigenvalues: $\lambda_1 = 1, \lambda_2 = .99, \lambda_3 = .9, \lambda_4 = .8, \dots$

Slow Case: A has eigenvalues: $\lambda_1 = 1, \lambda_2 = .99, \lambda_3 = .9, \lambda_4 = .8, \dots$

Slow Case: A has eigenvalues: $\lambda_1 = 1, \lambda_2 = .99, \lambda_3 = .9, \lambda_4 = .8, \dots$

Slow Case: A has eigenvalues: $\lambda_1 = 1, \lambda_2 = .99, \lambda_3 = .9, \lambda_4 = .8, \dots$

Slow Case: A has eigenvalues: $\lambda_1 = 1, \lambda_2 = .99, \lambda_3 = .9, \lambda_4 = .8, \dots$

Power Method Convergence Rate

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \ldots + c_d \lambda_d^t \vec{v}_d$$

Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$.
How many iterations t does it take to have $|\lambda_2|^t \le \delta \cdot |\lambda_1|^t$ for $\delta > 0$?
$$(\lambda_1)^{\dagger \le \delta} |\lambda_1|^{\dagger}$$

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \dots + c_d \lambda_d^t \vec{v}_d$$

Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$.

How many iterations t does it take to have $|\lambda_2|^t \leq \delta \cdot |\lambda_1|^t$ for $\delta > 0$?

$$|\lambda_2|^t = (1 - \gamma)^t \cdot |\lambda_1|^t$$

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \ldots + c_d \lambda_d^t \vec{v}_d$$

Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$.

How many iterations t does it take to have $|\lambda_2|^t \le \delta \cdot |\lambda_1|^t$ for $\delta > 0$?

$$|\lambda_2|^t = (1 - \gamma)^t \cdot |\lambda_1|^t$$
$$= (1 - \gamma)^{1/\gamma} \gamma^t \cdot |\lambda_1|^t$$
$$+ \forall \gamma, \gamma \neq$$

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \ldots + c_d \lambda_d^t \vec{v}_d$$

Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$.
How many iterations *t* does it take to have $|\lambda_2|^t \le \delta \cdot |\lambda_1|^t$ for $\delta > 0$?
 $|\lambda_2|^t = (1 - \gamma)^t \cdot |\lambda_1|^t$
 $= (1 - \gamma)^{1/\gamma \cdot \gamma t} \cdot |\lambda_1|^t$
 $\le e^{-\gamma t} \cdot |\lambda_1|^t$
 $\stackrel{i}{\le} \oint$

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \ldots + c_d \lambda_d^t \vec{v}_d$$

Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$.
How many iterations t does it take to have $|\lambda_2|^t \le \delta \cdot |\lambda_1|^t$ for $\delta > 0$?
 $|\lambda_2|^t = (1 - \gamma)^t \cdot |\lambda_1|^t$
 $= (1 - \gamma)^{1/\gamma \cdot \gamma t} \cdot |\lambda_1|^t$
 $\le e^{-\gamma t} \cdot |\lambda_1|^t \quad (|I_d)$
So it suffices to set- $\gamma t = \ln(\delta \mathbb{K})$. Or $t = \frac{\ln(\mathbb{K})}{\gamma}$.
 $t = -1 \cap (d)$

 $\vec{z}^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d \implies \vec{z}^{(t)} = c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \ldots + c_d \lambda_d^t \vec{v}_d$ Write $|\lambda_2| = (1 - \gamma)|\lambda_1|$ for 'gap' $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$. How many iterations t does it take to have $|\lambda_2|^t < \delta \cdot |\lambda_1|^t$ for $\delta > 0$? $|\lambda_2|^t = (1-\gamma)^t \cdot |\lambda_1|^t$ $= (1-\gamma)^{1/\gamma \cdot \gamma t} \cdot |\lambda_1|^t$ $\leq e^{-\gamma t} \cdot |\lambda_1|^t$ $|\lambda_1|^t$ So it suffices to set $\gamma t = \ln(\delta \mathcal{M})$. Or $t = \frac{\ln(\delta \mathcal{M})}{\gamma}$. How small must we set δ to ensure that $c_1 \lambda_1^t$ dominates all other components and so $\vec{z}^{(t)}$ is very close to \vec{v}_1 ?

Claim: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, for all *i*: N(D,1) $O(1/d^2) \le |c_i| \le O(\log d)$ Corollary: $\max_{j} \left| \frac{c_{j}}{c_{1}} \right| \leq O(d^{2} \log d).$ $A \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $A = V \Lambda V^T$. \vec{v}_1 : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step *i*, converging to \vec{v}_1 .

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \le O(d^2 \log d)$.

Claim 2: For gap
$$\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$$
, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_1^t}{\lambda_1^t}\right| \le \delta$ for all *i*.

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \le O(d^2 \log d)$.

Claim 2: For gap
$$\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$$
, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_i^t}{\lambda_1^t}\right| \le \delta$ for all *i*.
$$\vec{z}^{(t)} := \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d\|_2}$$

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \le O(d^2 \log d)$.

Claim 2: For gap
$$\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$$
, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_1^t}{\lambda_1^t}\right| \le \delta$ for all *i*.
 $\vec{z}^{(t)} := \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d\|_2} \Longrightarrow$
 $\|\vec{z}^{(t)} - \vec{v}_1\|_2 \le \left\|\frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1\|_2} - \vec{v}_1\right\|_2$

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \le O(d^2 \log d)$.

Claim 2: For gap $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_1^t}{\lambda_1^t}\right| \le \delta$ for all i. $\vec{z}^{(t)} := \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d\|_2} \implies$ $\|\vec{z}^{(t)} \quad \overbrace{V_1}^{(t)}\|_2 \le \left\| \underbrace{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}_{V_1} - \vec{v}_1 \right\|_2$ $= \left(\left\| \underbrace{c_2 \lambda_2^t}{c_1 \lambda_1^t} \underbrace{V_2}_{V_2} + \ldots + \frac{c_d \lambda_d^t}{\lambda_1^t} \underbrace{V_d}_{V_d} \right\|_2$

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \le O(d^2 \log d)$.

Claim 2: For gap
$$\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$$
, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_1^t}{\lambda_1^t}\right| \le \delta$ for all i .
 $\vec{z}^{(t)} := \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d\|_2} \Longrightarrow$
 $\|\vec{z}^{(t)} - \vec{v}_1\|_2 \le \left\|\frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1\|_2} - \vec{v}_1\right\|_2$
 $= \left\|\frac{c_2 \lambda_2^t}{c_1 \lambda_1^t} \vec{v}_2 + \ldots + \frac{c_d \lambda_d^t}{\lambda_1^t} \vec{v}_d\right\|_2 = \left|\frac{c_2 \lambda_2^t}{c_1 \lambda_1^t}\right| + \ldots + \left|\frac{c_d \lambda_d^t}{\lambda_1^t}\right|$

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \le O(d^2 \log d)$.

Claim 2: For gap
$$\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$$
, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_1^i}{\lambda_1^t}\right| \le \delta$ for all *i*.

$$\vec{z}^{(t)} := \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d\|_2} \Longrightarrow$$

$$\|\vec{z}^{(t)} - \vec{v}_1\|_2 \le \left\|\frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1\|_2} \underbrace{\downarrow_{V \circ V}}_{0 \circ V} \underbrace{\overleftarrow{V}_1}_{0 \circ V}\right\|_2$$

$$= \left\|\frac{c_2 \lambda_2^t}{c_1 \lambda_1^t} \vec{v}_2 + \ldots + \frac{c_d \lambda_d^t}{\lambda_1^t} \vec{v}_d\right\|_2 = \left(\underbrace{c_2 \lambda_2^t}_{c_1 \lambda_1^t} \underbrace{\downarrow_{V \circ V}}_{0 \circ V} + \ldots + \left|\frac{c_d \lambda_d^t}{\lambda_1^t}\right| \le \underline{\delta} \cdot O(d^2 \log d) \cdot d.$$

Claim 1: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$, with very high probability, $\max_j \left| \frac{c_j}{c_1} \right| \le O(d^2 \log d)$.

Claim 2: For gap
$$\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$$
, and $t = \frac{\ln(1/\delta)}{\gamma}$, $\left|\frac{\lambda_1^i}{\lambda_1^i}\right| \le \delta$ for all *i*.

$$\vec{z}^{(t)} := \frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d\|_2} \Longrightarrow$$

$$\|\vec{z}^{(t)} - \vec{v}_1\|_2 \le \left\|\frac{c_1 \lambda_1^t \vec{v}_1 + \ldots + c_d \lambda_d^t \vec{v}_d}{\|c_1 \lambda_1^t \vec{v}_1\|_2} - \vec{v}_1\right\|_2$$

$$= \left\|\frac{c_2 \lambda_2^t}{c_1 \lambda_1^t} \vec{v}_2 + \ldots + \frac{c_d \lambda_d^t}{\lambda_1^t} \vec{v}_d\right\|_2 = \left|\frac{c_2 \lambda_2^t}{c_1 \lambda_1^t}\right| + \ldots + \left|\frac{c_d \lambda_d^t}{\lambda_1^t}\right| \le \delta \cdot \underbrace{O(d^2 \log d) \cdot d}_{\le}.$$
Setting $\delta = O\left(\frac{\epsilon}{d^3 \log d}\right)$ gives $\|\vec{z}^{(t)} - \vec{v}_1\|_2 \le \epsilon$.

Power Method Theorem

Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$ be the relative gap between the first and second eigenvalues. If Power Method is initialized with a random Gaussian vector $\vec{v}^{(0)}$ then, with high probability, after $t = O\left(\frac{\ln(d/\epsilon)}{\gamma}\right)$ steps:

$$\|\vec{z}^{(t)}-\vec{v}_1\|_2 \leq \epsilon$$

Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$ be the relative gap between the first and second eigenvalues. If Power Method is initialized with a random Gaussian vector $\vec{v}^{(0)}$ then, with high probability, after $t = O\left(\frac{\ln(d/\epsilon)}{\gamma}\right)$ steps:

 $\|\vec{z}^{(t)}-\vec{v}_1\|_2\leq\epsilon.$

Total runtime: O(t) matrix-vector multiplications. If $A = X^T X$:

$$O\left(\operatorname{nnz}(\mathbf{X})\cdot\frac{\ln(d/\epsilon)}{\gamma}\cdot\right)=O\left(nd\cdot\frac{\ln(d/\epsilon)}{\gamma}\right)$$

Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1|}$ be the relative gap between the first and second eigenvalues. If Power Method is initialized with a random Gaussian vector $\vec{v}^{(0)}$ then, with high probability, after $t = O\left(\frac{\ln(d/\epsilon)}{\gamma}\right)$ steps:

 $\|\vec{z}^{(t)}-\vec{v}_1\|_2\leq\epsilon.$

Total runtime: O(t) matrix-vector multiplications. If $A = X^T X$:

$$O\left(\operatorname{nnz}(\mathsf{X})\cdot \frac{\ln(d/\epsilon)}{\gamma}\cdot\right) = O\left(nd\cdot \frac{\ln(d/\epsilon)}{\gamma}\right).$$

How is ϵ dependence?

How is γ dependence?

krylov subspace methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need $t = O\left(\frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

krylov subspace methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need $t = O\left(\frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

Main Idea: Need to separate λ_1 from λ_i for $i \ge 2$.

krylov subspace methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need $t = O\left(\frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

Main Idea: Need to separate λ_1 from λ_i for $i \ge 2$.

• Power method: power up to λ_1^t and λ_i^t .
krylov subspace methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need $t = O\left(\frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

Main Idea: Need to separate λ_1 from λ_i for $i \ge 2$.

- Power method: power up to λ_1^t and λ_i^t .
- Krylov methods: apply a better degree t polynomial $T_t(\cdot)$ to the eigenvalues to separate $T_t(\lambda_1)$ from $T_t(\lambda_i)$.

krylov subspace methods

Krylov subspace methods (Lanczos method, Arnoldi method.)

• How svds/eigs are actually implemented. Only need $t = O\left(\frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$ steps for the same guarantee.

Main Idea: Need to separate λ_1 from λ_i for $i \ge 2$.

- Power method: power up to λ_1^t and λ_i^t .
- Krylov methods: apply a better degree t polynomial $T_t(\cdot)$ to the eigenvalues to separate $T_t(\lambda_1)$ from $T_t(\lambda_i)$.
- Still requires just t matrix vector multiplies. Why?

krylov subspace methods

.

20

generalizations to larger k

- Block Power Method (a.k.a. Simultaneous Iteration, Subspace Iteration, or Orthogonal Iteration)
- Block Krylov methods

Runtime:
$$O\left(ndk \cdot \frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$$

to accurately compute the top k singular vectors.

generalizations to larger k

- Block Power Method (a.k.a. Simultaneous Iteration, Subspace Iteration, or Orthogonal Iteration)
- Block Krylov methods

Runtime:
$$O\left(ndk \cdot \frac{\ln(d/\epsilon)}{\sqrt{\gamma}}\right)$$

to accurately compute the top k singular vectors.

'Gapless' Runtime:
$$O\left(ndk \cdot \frac{\ln(d/\epsilon)}{\sqrt{\epsilon}}\right)$$

if you just want a set of vectors that gives an ϵ -optimal low-rank approximation when you project onto them.

Connection Between Random Walks, Eigenvectors, and Power Method (Bonus Material)

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random from the neighbors of the current vertex.

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node } i \text{ at step } t)$.

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node } i \text{ at step } t)$.

• Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node } i \text{ at step } t)$.

- Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$
- · Update:

$$Pr(walk at i at step t) = \sum_{j \in neigh(i)} Pr(walk at j at step t-1) \cdot \frac{1}{degree(j)}$$

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node } i \text{ at step } t)$.

- Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$
- · Update:

$$\begin{aligned} \mathsf{Pr}(\mathsf{walk at i at step t}) &= \sum_{j \in \mathit{neigh}(i)} \mathsf{Pr}(\mathsf{walk at j at step t-1}) \cdot \frac{1}{\mathit{degree}(j)} \\ &= \vec{z}^{\mathsf{T}} \vec{p}^{(t-1)} \end{aligned}$$

where $\vec{z}(j) = \frac{1}{degree(j)}$ for all $j \in neigh(i)$, $\vec{z}(j) = 0$ for all $j \notin neigh(i)$.

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node } i \text{ at step } t)$.

- Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$
- · Update:

$$Pr(\text{walk at i at step t}) = \sum_{j \in neigh(i)} Pr(\text{walk at j at step t-1}) \cdot \frac{1}{degree(j)}$$
$$= \vec{z}^T \vec{p}^{(t-1)}$$

where $\vec{z}(j) = \frac{1}{degree(j)}$ for all $j \in neigh(i)$, $\vec{z}(j) = 0$ for all $j \notin neigh(i)$.

• \vec{z} is the *i*th row of the right normalized adjacency matrix AD⁻¹.

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node } i \text{ at step } t)$.

- Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$
- · Update:

$$Pr(\text{walk at i at step t}) = \sum_{j \in neigh(i)} Pr(\text{walk at j at step t-1}) \cdot \frac{1}{degree(j)}$$
$$= \vec{z}^T \vec{p}^{(t-1)}$$

where $\vec{z}(j) = \frac{1}{degree(j)}$ for all $j \in neigh(i)$, $\vec{z}(j) = 0$ for all $j \notin neigh(i)$.

• \vec{z} is the *i*th row of the right normalized adjacency matrix AD⁻¹.

•
$$\vec{p}^{(t)} = \mathbf{A} \mathbf{D}^{-1} \vec{p}^{(t-1)}$$

Let $\vec{p}^{(t)} \in \mathbb{R}^n$ have i^{th} entry $\vec{p}_i^{(t)} = \Pr(\text{walk at node } i \text{ at step } t)$.

- Initialize: $\vec{p}^{(0)} = [1, 0, 0, \dots, 0].$
- · Update:

$$\begin{aligned} \mathsf{Pr}(\mathsf{walk at i at step t}) &= \sum_{j \in neigh(i)} \mathsf{Pr}(\mathsf{walk at j at step t-1}) \cdot \frac{1}{degree(j)} \\ &= \vec{z}^{\mathsf{T}} \vec{p}^{(t-1)} \end{aligned}$$

where $\vec{z}(j) = \frac{1}{degree(j)}$ for all $j \in neigh(i)$, $\vec{z}(j) = 0$ for all $j \notin neigh(i)$.

• \vec{z} is the *i*th row of the right normalized adjacency matrix AD⁻¹.

•
$$\vec{p}^{(t)} = AD^{-1}\vec{p}^{(t-1)} = \underbrace{AD^{-1}AD^{-1}\dots AD^{-1}}_{t \text{ true true }}\vec{p}^{(0)}$$

Claim: After *t* steps, the probability that a random walk is at node *i* is given by the *i*th entry of

$$\vec{p}^{(t)} = \underbrace{\mathsf{A}\mathsf{D}^{-1}\mathsf{A}\mathsf{D}^{-1}\ldots\mathsf{A}\mathsf{D}^{-1}}_{U}\vec{p}^{(0)}.$$

t times

Claim: After *t* steps, the probability that a random walk is at node *i* is given by the *i*th entry of

$$\vec{p}^{(t)} = \underbrace{\mathsf{A}\mathsf{D}^{-1}\mathsf{A}\mathsf{D}^{-1}\ldots\mathsf{A}\mathsf{D}^{-1}}_{\mathsf{A}\mathsf{D}^{-1}}\vec{p}^{(0)}.$$

$$\mathsf{D}^{-1/2}\vec{p}^{(t)} = \underbrace{(\mathsf{D}^{-1/2}\mathsf{A}\mathsf{D}^{-1/2})(\mathsf{D}^{-1/2}\mathsf{A}\mathsf{D}^{-1/2})\dots(\mathsf{D}^{-1/2}\mathsf{A}\mathsf{D}^{-1/2})}_{t \text{ times}}(\mathsf{D}^{-1/2}\vec{p}^{(0)}).$$

Claim: After *t* steps, the probability that a random walk is at node *i* is given by the *i*th entry of

$$\vec{p}^{(t)} = \underbrace{\mathsf{A}\mathsf{D}^{-1}\mathsf{A}\mathsf{D}^{-1}\ldots\mathsf{A}\mathsf{D}^{-1}}_{\mathsf{A}\mathsf{D}^{-1}}\vec{p}^{(0)}.$$

$$\mathbf{D}^{-1/2}\vec{p}^{(t)} = \underbrace{(\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2})(\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2})\dots(\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2})}_{t \text{ times}} (\mathbf{D}^{-1/2}\vec{p}^{(0)}).$$

• $\mathbf{D}^{-1/2}\vec{p}^{(t)}$ is exactly what would obtained by applying t/2 iterations of power method to $\mathbf{D}^{-1/2}\vec{p}^{(0)}$!

Claim: After *t* steps, the probability that a random walk is at node *i* is given by the *i*th entry of

$$\vec{p}^{(t)} = \underbrace{\mathsf{A}\mathsf{D}^{-1}\mathsf{A}\mathsf{D}^{-1}\dots\mathsf{A}\mathsf{D}^{-1}}_{t \text{ times}} \vec{p}^{(0)}.$$

$$\mathbf{D}^{-1/2}\vec{p}^{(t)} = \underbrace{(\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2})(\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2})\dots(\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2})}_{t \text{ times}} (\mathbf{D}^{-1/2}\vec{p}^{(0)}).$$

- $\mathbf{D}^{-1/2}\vec{p}^{(t)}$ is exactly what would obtained by applying t/2 iterations of power method to $\mathbf{D}^{-1/2}\vec{p}^{(0)}$!
- Will converge to the top eigenvector of the normalized adjacency matrix D^{-1/2}AD^{-1/2}. Stationary distribution.

Claim: After *t* steps, the probability that a random walk is at node *i* is given by the *i*th entry of

$$\vec{p}^{(t)} = \underbrace{\mathsf{A}\mathsf{D}^{-1}\mathsf{A}\mathsf{D}^{-1}\dots\mathsf{A}\mathsf{D}^{-1}}_{t \text{ times}} \vec{p}^{(0)}.$$

$$\mathbf{D}^{-1/2}\vec{p}^{(t)} = \underbrace{(\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2})(\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2})\dots(\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2})}_{t \text{ times}} (\mathbf{D}^{-1/2}\vec{p}^{(0)}).$$

- $\mathbf{D}^{-1/2}\vec{p}^{(t)}$ is exactly what would obtained by applying t/2 iterations of power method to $\mathbf{D}^{-1/2}\vec{p}^{(0)}$!
- Will converge to the top eigenvector of the normalized adjacency matrix $D^{-1/2}AD^{-1/2}$. Stationary distribution.
- Like the power method, the time a random walk takes to converge to its stationary distribution (mixing time) is dependent on the gap between the top two eigenvalues of $D^{-1/2}AD^{-1/2}$. The spectral gap.