COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2023. Lecture 18

- Problem Set 3 is due next Friday at 11:59pm.
- I made a small change to Problem 1.4: replacing $\sum_{i=1}^{n} \sigma_i(\mathbf{A})^2$ with $\sum_{i=1}^{\operatorname{rank}(\mathbf{A})} \sigma_i(\mathbf{A})^2$. This don't change the solution to the problem, but as we will see will better match the conventions for SVD that I introduce today.
- Linear algebra review session Monday 2-3pm. Location TBD.

Summary

Last Class

- Finish up optimal low-rank approximation via eigendecomposition.
- Eigenvalue spectrum as a way of measuring low-rank approximation error.

This Class: The SVD and Application of Low-Rank Approximation Beyond Compression

- The Singular Value Decomposition (SVD) and its connection to eigendecomposition and low-rank approximation.
- Low-rank matrix completion (predicting missing measurements using low-rank structure).
- Entity embeddings (e.g., word embeddings, node embeddings).
- Low-rank approximation for non-linear dimensionality reduction.

Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $X \in \mathbb{R}^{n \times d}$ with rank(X) = r can be written as $X = U \Sigma V^{T}$.

- **U** has orthonormal columns $\vec{u}_1, \ldots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- V has orthonormal columns $\vec{v}_1, \ldots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r > 0$ (singular values).

Connection of the SVD to Eigendecomposition

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$: $\mathbf{X}^{\mathsf{T}} \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathsf{T}} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{\Sigma}^{2} \mathbf{V}^{\mathsf{T}}$ (the eigendecomposition) Similarly: $\mathbf{X} \mathbf{X}^{\mathsf{T}} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathsf{T}} = \mathbf{U} \mathbf{\Sigma}^{2} \mathbf{U}^{\mathsf{T}}$.

The left and right singular vectors are the eigenvectors of the covariance matrix $X^T X$ and the gram matrix XX^T respectively.

So, letting $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \ldots, \vec{v}_k$, we know that $\mathbf{XV}_k \mathbf{V}_k^{\mathsf{T}}$ is the best rank-*k* approximation to **X** (given by PCA).

What about $\mathbf{U}_k \mathbf{U}_k^T \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \dots, \vec{u}_k$? Gives exactly the same approximation!

 $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \ldots$ (right singular vectors), $\mathbf{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X: $X_k = \arg \min_{\operatorname{rank} - k} _{B \in \mathbb{R}^{n \times d}} ||X - B||_F$ is given by:

$$\mathbf{X}_{k} = \mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathsf{T}} = \mathbf{U}_{k}\mathbf{U}_{k}^{\mathsf{T}}\mathbf{X} = \mathbf{U}_{k}\boldsymbol{\Sigma}_{k}\mathbf{V}_{k}^{\mathsf{T}}$$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k

Row (data point) compression

Column (feature) compression

6

10000* bathrooms+ 10* (sq. ft.) ≈ list price						
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
	•		•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X: $X_k = \arg \min_{\operatorname{rank} - k} \mathop{\mathsf{B}}_{\in \mathbb{R}^{n \times d}} \|X - B\|_F$ is given by:

$$\mathbf{X}_{k} = \mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathsf{T}} = \mathbf{U}_{k}\mathbf{U}_{k}^{\mathsf{T}}\mathbf{X} = \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{\mathsf{T}}$$

 $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \ldots$ (right singular vectors), $\mathbf{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X: $X_k = \arg \min_{\operatorname{rank} - k} \mathop{\mathsf{B}}_{\in \mathbb{R}^{n \times d}} \|X - B\|_F$ is given by:

$$\mathbf{X}_{k} = \mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathsf{T}} = \mathbf{U}_{k}\mathbf{U}_{k}^{\mathsf{T}}\mathbf{X} = \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{\mathsf{T}}$$

 $X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times rank(X)}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times rank(X)}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \ldots$ (right singular vectors), $\Sigma \in \mathbb{R}^{rank(X) \times rank(X)}$: positive diagonal matrix containing singular values of X.

- Every $\mathbf{X} \in \mathbb{R}^{n \times d}$ can be written in its SVD as $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$.
- $\mathbf{U} \in \mathbb{R}^{n \times r}$ (orthonormal) contains the eigenvectors of $\mathbf{X}\mathbf{X}^{\mathsf{T}}$. $\mathbf{V} \in \mathbb{R}^{d \times r}$ (orthonormal) contains the eigenvectors of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$. $\mathbf{\Sigma} \in \mathbb{R}^{r \times r}$ (diagonal) contains their eigenvalues.

•
$$\mathbf{U}_{k}\mathbf{U}_{k}^{\mathsf{T}}\mathbf{X} = \mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathsf{T}} = \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{\mathsf{T}} = \operatorname*{arg\ min}_{B\ s.t.\ rank(B) \leq k} \|\mathbf{X} - \mathbf{B}\|_{F}.$$

Applications of Low-Rank Approximation Beyond Compression

Matrix Completion

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-*k* (i.e., well approximated by a rank *k* matrix). Classic example: the Netflix prize problem.

Under certain assumptions, can show that **Y** well approximates **X** on both the observed and (most importantly) unobserved entries.

Dimensionality reduction embeds *d*-dimensional vectors into *k* dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Classic Approach: Convert each item into a (very) high-dimensional feature vector and then apply low-rank approximation.

• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

$$\mathbf{X}_{i,a} \approx (\mathbf{Y}\mathbf{Z}^{\mathsf{T}})_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

- I.e., $\langle \vec{y}_i, \vec{z}_a \rangle \approx 1$ when doc_i contains $word_a$.
- If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$.

If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$

Another View: Each column of **Y** represents a 'topic'. $\vec{y_i}(j)$ indicates how much *doc_i* belongs to topic *j*. $\vec{z_a}(j)$ indicates how much *word_a* associates with that topic.

- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if word_a and word_b appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z}^{T} = \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX.
- Claim: ZZ^T is the best rank-*k* approximation of X^TX . I.e., arg min_{rank} -*k* B $||X^TX - B||_F$

LSA gives a way of embedding words into *k*-dimensional space.

- Embedding is via low-rank approximation of **X**^T**X**: where (**X**^T**X**)_{*a,b*} is the number of documents that both *word*_{*a*} and *word*_{*b*} appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word_a and word_b.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of *w* words, in similar positions of documents in different languages, etc.
- Replacing X^TX with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastText, etc.

Example: Word Embedding

Note: word2vec is typically described as a neural-network method, but can be viewed as just a low-rank approximation of a specific similarity matrix. *Neural word embedding as implicit matrix factorization*, Levy and Goldberg.

Questions?