# COMPSCI 514: Algorithms for Data Science 

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 18

## Logistics

- Problem Set 3 is due next Friday at 11:59pm.
- I made a small change to Problem 1.4: replacing $\sum_{i=1}^{n} \sigma_{i}(\mathrm{~A})^{2}$ with $\sum_{i=1}^{\operatorname{rank}(\mathrm{A})} \sigma_{i}(\mathrm{~A})^{2}$. This don't change the solution to the problem, but as we will see will better match the conventions for SVD that I introduce today.
- Linear algebra review session Monday 2-3pm. Location TBD.


## Summary

## Last Class

- Finish up optimal low-rank approximation via eigendecomposition.
- Eigenvalue spectrum as a way of measuring low-rank approximation error.

This Class: The SVD and Application of Low-Rank Approximation Beyond Compression

- The Singular Value Decomposition (SVD) and its connection to eigendecomposition and low-rank approximation.
- Low-rank matrix completion (predicting missing measurements using low-rank structure).
- Entity embeddings (e.g., word embeddings, node embeddings).
- Low-rank approximation for non-linear dimensionality reduction.


## Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(\mathrm{X})=r$ can be written as $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma}^{\boldsymbol{\top}}$.

- U has orthonormal columns $\vec{u}_{1}, \ldots, \vec{u}_{r} \in \mathbb{R}^{n}$ (left singular vectors).
- $V$ has orthonormal columns $\vec{v}_{1}, \ldots, \vec{v}_{r} \in \mathbb{R}^{d}$ (right singular vectors).
- $\boldsymbol{\Sigma}$ is diagonal with elements $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$ (singular values).
$\mathrm{n} \times \mathrm{d}$

orthonormal positive diagonal
orthonormal



## Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma}^{\top}$ :

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X X}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}$.
The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix $\mathrm{XX}^{\top}$ respectively.

So, letting $\mathrm{V}_{k} \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we know that $\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}$ is the best rank- $k$ approximation to X (given by PCA).

What about $\mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{X}$ where $\mathbf{U}_{k} \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_{1}, \ldots, \vec{u}_{k}$ ? Gives exactly the same approximation!
$X \in \mathbb{R}^{n \times d}$ : data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$ : matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathrm{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathrm{X})}$ : matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$ : positive diagonal matrix containing singular values of $X$.

## The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :
$X_{k}=\arg \min _{r a n k-k} B \in \mathbb{R}^{n \times d}\|X-B\|_{F}$ is given by:

$$
\mathrm{X}_{k}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}=\mathrm{U}_{k} \boldsymbol{\Sigma}_{k} \mathrm{~V}_{k}^{\top}
$$

Correspond to projecting the rows (data points) onto the span of $\mathrm{V}_{k}$ or the columns (features) onto the span of $U_{k}$

Row (data point) compression
projections onto 15
784 dimensional vectors dimensional space


Column (feature) compression

|  | 10000* bathrooms $+10^{*}$ (sq.-ft.) $\approx$ list price |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | bedrooms | bathrooms | sq.ft | floors | list price | sale price |
| home 1 | 2 | 2 | 1800 | 2 | 200,000 | 195,000 |
| home 2 | 4 | 2.5 | 2700 | 1 | 300,000 | 310,000 |
| - | - | - | . | - | - | - |
| - | - | - | - | - | - | - |
| - | - | - | - | - | - | - |
| home n | 5 | 3.5 | 3600 | 3 | 450,000 | 450,000 |

## The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :

$$
X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|\mathrm{X}-\mathrm{B}\|_{F} \text { is given by: }
$$

$$
\mathrm{X}_{k}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}=\mathrm{U}_{k} \boldsymbol{\Sigma}_{k} \mathrm{~V}_{k}^{\top}
$$

$X \in \mathbb{R}^{n \times d}$ : data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$ : matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(\mathrm{X})}$ : matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$ : positive diagonal matrix containing singular values of $X$.

## The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :

$$
X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|\mathrm{X}-\mathrm{B}\|_{F} \text { is given by: }
$$

$$
\mathrm{X}_{k}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}=\mathrm{U}_{k} \boldsymbol{\Sigma}_{k} \mathrm{~V}_{k}^{\top}
$$

$X \in \mathbb{R}^{n \times d}$ : data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$ : matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(\mathrm{X})}$ : matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$ : positive diagonal matrix containing singular values of $X$.

## SVD Review

- Every $\mathbf{X} \in \mathbb{R}^{n \times d}$ can be written in its SVD as $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$.
- $U \in \mathbb{R}^{n \times r}$ (orthonormal) contains the eigenvectors of $X X^{\top}$. $\mathrm{V} \in \mathbb{R}^{d \times r}$ (orthonormal) contains the eigenvectors of $\mathrm{X}^{\top} \mathrm{X}$. $\boldsymbol{\Sigma} \in \mathbb{R}^{r \times r}$ (diagonal) contains their eigenvalues.
- $\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \boldsymbol{\Sigma}_{k} \mathrm{~V}_{k}^{\top}=\underset{\text { B st. } \operatorname{rank}(\mathrm{B}) \leq k}{\arg \min }\|\mathrm{X}-\mathrm{B}\|_{F}$.


## Applications of Low-Rank Approximation Beyond Compression

## Matrix Completion

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank $k$ matrix). Classic example: the Netflix prize problem.


Solve: $Y=\underset{B \text { s.t. } \operatorname{rank}(B) \leq k}{\arg \min } \sum_{\text {observed }(j, k)}\left[X_{j, k}-B_{j, k}\right]^{2}$
Under certain assumptions, can show that Y well approximates X on both the observed and (most importantly) unobserved entries.

## Entity Embeddings

Dimensionality reduction embeds $d$-dimensional vectors into $k$ dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Classic Approach: Convert each item into a (very) high-dimensional feature vector and then apply low-rank approximation.

## Example: Latent Semantic Analysis

## Term Document Matrix X




Low-Rank Approximation via SVD


## Example: Latent Semantic Analysis

Term Document Matrix X

| doc_1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| doc_2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| : | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| doc_n | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

Low-Rank Approximation via SVD



Y

- If the error $\left\|\mathrm{X}-\mathrm{YZ}^{\top}\right\|_{F}$ is small, then on average,

$$
\mathrm{X}_{i, a} \approx\left(\mathrm{YZ}^{\top}\right)_{i, a}=\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle .
$$

- I.e., $\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx 1$ when doc $c_{i}$ contains word ${ }_{a}$.
- If doci ${ }_{i}$ and $d o c_{j}$ both contain word ${ }_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle \approx 1$.


## Example: Latent Semantic Analysis

If doc $c_{i}$ and doc $j_{j}$ both contain word ${ }_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle \approx 1$


Another View: Each column of Y represents a 'topic'. $\vec{y}_{i}(j)$ indicates how much doc $c_{i}$ belongs to topic $j$. $\vec{z}_{a}(j)$ indicates how much word ${ }_{a}$ associates with that topic.

## Example: Latent Semantic Analysis

Term Document Matrix $\mathbf{X}$

| doc_1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| doc_2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| . | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| doc_n | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

Low-Rank Approximation via SVD


Term Documen


- Just like with documents, $\vec{z}_{a}$ and $\vec{z}_{b}$ will tend to have high dot product if word $_{a}$ and word ${ }_{b}$ appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z}^{\top}=\boldsymbol{\Sigma}_{k} V_{K}^{\top}$.
- The columns of $\mathrm{V}_{k}$ are equivalently: the top $k$ eigenvectors of $X^{\top} X$.
- Claim: $Z^{\top}$ is the best rank-k approximation of $X^{\top} X$. I.e., $\arg \min _{\text {rank }-k \mathbf{B}}\left\|\mathbf{X}^{\top} \mathbf{X}-\mathrm{B}\right\|_{F}$


## Example: Word Embedding

LSA gives a way of embedding words into $k$-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{\top} \mathbf{X}$ : where $\left(\mathbf{X}^{\top} \mathbf{X}\right)_{a, b}$ is the number of documents that both word ${ }_{a}$ and word $_{b}$ appear in.
- Think about $\mathbf{X}^{\top} \mathbf{X}$ as a similarity matrix (gram matrix, kernel matrix) with entry $(a, b)$ being the similarity between word ${ }_{a}$ and $w_{\text {word }}^{b}$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of $w$ words, in similar positions of documents in different languages, etc.
- Replacing $X^{\top} X$ with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastText, etc.


## Example: Word Embedding



Note: word2vec is typically described as a neural-network method, but can be viewed as just a low-rank approximation of a specific similarity matrix. Neural word embedding as implicit matrix factorization, Levy and Goldberg.

## Questions?

