ϱ

COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 18

Logistics

- Problem Set 3 is due next Friday at 11:59 pm.
- I made a small change to Problem 1.4: replacing $\sum_{i=1}^{n} \sigma_{i}(\mathrm{~A})^{2}$ with $\sum_{i=1}^{\operatorname{rank}(\mathrm{A})} \sigma_{i}(\mathrm{~A})^{2}$. This don't change the solution to the problem, but as we will see will better match the conventions for SVD that I introduce today.
- Linear algebra review session Monday 2-3pm. Location TV\&D.

Summary

Last Class

- Finish up optimal low-rank approximation via eigendecomposition.

- \&igenvalue spectrum as a way ofmeasuring low-rank dpproximation error.

This Class: The SVD and Application of Low-Rank Approximation Beyond Compression

The Singular Value Decomposition (SVD) and its connection to eigendecomposition and low-rank approximation.
Low-rank matrix completion (predicting missing measurements using low-rank structure).

- Entity embeddings (e.g., word embeddings, node embeddings).
[Low-rank approximation for non-linear dimensionality reduction.

Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices.

Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(\mathrm{X})=r$ can be written as $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$.

- U has orthonormal columns $\vec{u}_{1}, \ldots, \vec{u}_{r} \in \mathbb{R}^{n}$ (left singular vectors).
- V has orthonormal columns $\vec{v}_{1}, \ldots, \vec{v}_{r} \in \mathbb{R}^{d}$ (right singular vectors).
- $\boldsymbol{\Sigma}$ is diagonal with elements $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$ (singulax values).

$n \times d$

Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\begin{aligned}
x^{\top} x= & \left(U \Sigma v^{\top}\right)^{\top}\left(U \Sigma V^{\top}\right) \\
& V \Sigma U^{\top} \cup \Sigma V^{\top} \\
& V \Sigma \Sigma V^{\top}=V \Sigma^{2} V^{\top}
\end{aligned}
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathrm{V} \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X .

Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathrm{X}^{\top} \mathrm{X}=\mathrm{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathrm{V}^{\top}
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(\mathrm{X})}$: positive diagonal matrix containing singular values of X .

Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma}^{\top}$:

$$
\mathrm{X}^{\top} \mathrm{X}=\mathrm{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} U \boldsymbol{\Sigma} \mathrm{~V}^{\top}=\mathrm{V} \boldsymbol{\Sigma}^{2} \mathrm{~V}^{\top}
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{V}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X .

Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathrm{V} \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X .

Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $X X^{\top}=\mathbf{U \Sigma} \boldsymbol{V} / V^{\Sigma} \boldsymbol{\Sigma} \mathbf{U}^{\top}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}$.
$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathrm{V} \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X .

Connection of the SVD to Eigendecomposition
Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\underline{V} \boldsymbol{\Sigma} U^{\top} U \boldsymbol{\Sigma} V^{\top} \equiv V \Sigma^{2} V^{\top} \text { (the eigendecomposition) }
$$

The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix $\mathbf{X} \mathbf{X}^{\top}$ respectively.

$$
G_{i}(x)^{2}=\lambda_{i}\left(x^{\top} x\right)=\lambda_{i}\left(x x^{\top}\right)
$$

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=0 \\
& (A-\lambda I) V \\
& A V-\lambda V \\
& \lambda V-\lambda V=0
\end{aligned}
$$

$$
\lambda_{i}(A B)=\lambda_{i}(B A)
$$

$$
n\left[x x^{\top}\right]_{i j}=\left\langle x_{i}, x_{i}\right\rangle
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X} \mathbf{X}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}$.
The left and right singular vectors are the eigenvectors of the covariance matrix $X^{\top} X$ and the gram matrix $X X^{\top}$ respectively. $X^{\top} X$ So, letting $\mathrm{V}_{k} \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_{1}, \ldots, \vec{V}_{k}$, we know that $\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}$ is the best rank- k approximation to X (given by PCA). leigenvels of $X^{\top} X$
$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$: positive diagonal matrix containing singular values of X .

Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X} \mathbf{X}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}$.
The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix XX^{\top} respectively.

So, letting $\mathrm{V}_{k} \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we know that $\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}$ is the best rank- k approximation to X (given by PCA). What about $\mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{X}$ where $\mathbf{U}_{k} \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_{1}, \ldots, \vec{u}_{k}$?
$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$: positive diagonal matrix containing singular values of X .

Connection of the SVD to Eigendecomposition

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\underline{\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \text { : }}$

$$
\underline{\mathbf{X}^{\top} \mathbf{X}}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\underline{\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top}} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X X}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}$.
The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix XX^{\top} respectively.

So, letting $V_{k} \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we know that $\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}$ is the best rank -k approximation to X (given by PCA).
What about $U_{k} U_{k}^{T} X$ where $U_{k} \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_{1}, \ldots, \vec{u}_{k}$? Gives exactly the same approximation! $\quad X V_{k} V_{k}^{\top}=U_{k} V_{k}^{\top} X$
$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{V}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X .

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|X-B\|_{F}$ is given by:

$$
X_{k}=X V_{k} V_{k}^{\top}=U_{k} U_{k}^{\top} X
$$

Correspond to projecting the rows (data points) onto the span of V_{k} or the columns (features) onto the span of U_{k}

Row (data point) compression

projections onto 15

Column (feature) compression

	10000* bathrooms+ 10^{*} (sq.f.t.) \approx list price					
	bedrooms	bathrooms	sq.ft	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
.	.	-	.	.	-	-
.	-	-	-	.	-	-
-	-	-	-	-	-	
home n	5	3.5	3600	3	450,000	450,000

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|X-B\|_{F}$ is given by:

$$
\mathrm{X}_{k}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}
$$

Correspond to projecting the rows (data points) onto the span of V_{k} or the columns (features) onto the span of U_{k}

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|X-B\|_{F}$ is given by:

$$
\mathrm{X}_{k}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}
$$

Correspond to projecting the rows (data points) onto the span of V_{k} or the columns (features) onto the span of U_{k}

The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|X-B\|_{F}$ is given by:

$$
\mathrm{X}_{k}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}=\mathrm{U}_{k} \boldsymbol{\Sigma}_{k} \mathrm{~V}_{k}^{\top}
$$

Correspond to projecting the rows (data points) onto the span of V_{k} or the columns (features) onto the span of \mathbf{U}_{k}

$$
\mathrm{n} \times \mathrm{d} \text { (rank-k) orthonormal positive diagonal orthonormal }
$$

The SVD and Optimal Low-Rank Approximation
The best low-rank approximation to X : $X_{k}=\arg \min _{\text {rank }-k} \underset{B \in \mathbb{R}^{n \times d}}{ }\|X-B\|_{F}$ is given by: $\left[\sum\right] \rightarrow k\left[\left\{_{k}\right]\right.$
$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{V}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

The SVD and Optimal Low-Rank Approximation
The best low-rank approximation to X : $X_{k}=\arg \min _{\text {rank }-k}^{\operatorname{rank}(B)=\mathbb{R}^{n \times d}}\|X-B\|_{F}$ is given by:

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathrm{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathrm{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

SVD Review

$$
\begin{array}{ll}
\operatorname{sVD}\left(x^{\top} x\right)=E I G\left(x^{\top} x\right) & x=U \Sigma V^{\top} \\
V \varepsilon^{2} V^{\top} & \left(x^{\top} x\right)\left(x^{\top} x\right)^{\top}=\left(x^{\top} x\right)^{2}=V \varepsilon^{4} V^{\top} \\
V^{\prime \prime} v^{\top}
\end{array}
$$

$$
\begin{gathered}
V \sum^{2} V^{\prime} \\
V^{\prime \prime \prime} N^{\top} \\
\text { 1. Every } x \in \mathbb{R}^{n \times d} \text { can be written in } i
\end{gathered}
$$

- Every $X \in \mathbb{R}^{n} \in \mathbb{R}^{n \times d}$ can be written in its SVD as $U \boldsymbol{\Sigma} V^{\top}$.
- $\mathrm{U} \in \mathbb{R}^{n \times r}$ (orthonormal) contains the eigenvectors of $\mathbf{X X}{ }^{\top}$.
$\mathrm{V}_{2} \in \mathbb{R}^{d \times r}$ (orthonormal) contains the eigenvectors of $\mathrm{X}^{\top} \mathrm{X}$. $\boldsymbol{\Sigma} \in \mathbb{R}^{r \times r}$ (diagonal) contains their eigenvalues.

$$
\begin{aligned}
& \text { - } \mathrm{U}_{k} \mathrm{U}_{k}^{T} \mathrm{X}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{T}=\mathrm{U}_{k} \boldsymbol{\Sigma}_{k} \mathrm{~V}_{k}^{\top}=\underset{\mathrm{B} \text { set. } \operatorname{rank}(\mathrm{B}) \leq R}{\arg \min }\|\mathrm{X}-\mathrm{B}\|_{F} . \\
& n\left[\begin{array}{ccc}
U_{1} & n & \\
U_{1} & U & u_{n}
\end{array}\right]
\end{aligned}
$$

Applications of Low-Rank Approximation Beyond Compression

Matrix Completion

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix).

Matrix Completion

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.
X

5	3	3	1	4	4	4	3	5
4	3	3	1	4	4	5	3	5
3	3	3	2	3	3	3	3	3
4	3	3	4	4	4	4	3	3
3	3	3	2	3	3	3	3	3
2	5	3	4	4	4	4	4	5
1	3	3	2	3	3	3	1	2

Matrix Completion
Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Why right x be close to low rank?

- veers similar
- tote darling an movies
- Serves

Matrix Completion

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Matrix Completion

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Matrix Completion

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Solve: $Y=\underset{B \text { s.t. } \operatorname{rank}(B) \leq k}{\arg \min } \sum_{\text {observed }(j, k)}\left[X_{j, k}-B_{j, k}\right]^{2}$

Matrix Completion

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank $-k$ (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

$$
\operatorname{rank}(x) \leqq \min (n, d)
$$

Solve f: $Y=\underset{B \text { sst. }}{\arg \operatorname{rank}(B) \leq k} \sum_{\text {observed }(j, k)}\left[X_{j, k}-B_{j, k}\right]^{2}$
Under certain assumptions, can show that Y well approximates X on both the observed and (most importantly) unobserved entries.

Entity Embeddings

Dimensionality reduction embeds d-dimensional vectors into k dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Entity Embeddings

Dimensionality reduction embeds d-dimensional vectors into k dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Classic Approach: Convert each item into a (very) high-dimensional feature vector and then apply low-rank approximation.

Example: Latent Semantic Analysis

Term Document Matrix X

Example: Latent Semantic Analysis

Term Document Matrix X

	$c_{a_{r}} \prime_{a_{n}} r_{O_{s}}$			\cdots			$\%^{\circ}$		at
doc_1	0	0	1	0	0	1	1	0	0
doc_2	0	0	0	1	0	1	0	0	0
:	1	1	0	1	0	0	0	1	0
-	0	0	0	0	0	0	0	1	1
doc_n	1	0	0	0	0	0	0	1	1

Low-Rank Approximation via SVD

Example: Latent Semantic Analysis

Term Document Matrix X

Low-Rank Approximation via SVD

Example: Latent Semantic Analysis

Term Document Matrix X

Low-Rank Approximation via SVD

- If the error $\left\|\mathrm{X}-\mathrm{YZ}^{\top}\right\|_{F}$ is small, then on average,

$$
\mathrm{X}_{i, a} \approx\left(\mathrm{YZ}^{\top}\right)_{i, a}=\left\langle\underline{\left.\vec{y}_{i}, \vec{z}_{a}\right\rangle .}\right.
$$

Example: Latent Semantic Analysis

Term Document Matrix X

Low-Rank Approximation via SVD

- If the error $\left\|\mathrm{X}-\mathrm{YZ}^{\top}\right\|_{F}$ is small, then on average,

$$
\mathrm{X}_{\mathrm{i}, a} \approx(\mathrm{YZ})_{i, a}=\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle .
$$

- I.e., $\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx 1$ when doc contains word ${ }_{a}$.

Example: Latent Semantic Analysis

Term Document Matrix X

Low-Rank Approximation via SVD

- If the error $\left\|\mathrm{X}-\mathrm{Y} Z^{\top}\right\|_{F}$ is small, then on average, dou

$$
\begin{aligned}
& \mathrm{X}_{i, a} \approx\left(\mathrm{YZ}^{\top}\right)_{i, a}=\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \text {. each column } Z \text { is } \\
& \text { 11 of word }
\end{aligned}
$$

- I.e., $\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx 1$ when doc c_{i} contains word $_{a}$.
- If doc and $_{i}$ doc $_{j}$ both contain word $\left.{ }_{a}, \underline{\left\langle\vec{y}_{i}, \vec{z}_{a}\right.}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle \approx 1$.

$$
y_{i} \sim y_{j}
$$

Example: Latent Semantic Analysis

If doc c_{i} and doc $_{j}$ both contain word ${ }_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle \approx 1$

Example: Latent Semantic Analysis

If doc c_{i} and doc ${ }_{j}$ both contain word $_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle \approx 1$

Another View: Each column of Y represents a 'topic'. $\vec{y}_{i}(j)$ indicates how much doc c_{i} belongs to topic j. $\vec{z}_{a}(j)$ indicates how much word ${ }_{a}$ associates with that topic.

Example: Latent Semantic Analysis

Term Document Matrix X

Low-Rank Approximation via SVD

- Just like with documents, \vec{z}_{a} and \vec{z}_{b} will tend to have high dot product if word ${ }_{a}$ and word ${ }_{b}$ appear in many of the same documents.

Example: Latent Semantic Analysis

- Just like with documents, \vec{z}_{a} and \vec{z}_{b} will tend to have high dot product if word $_{a}$ and word ${ }_{b}$ appear in many of the same documents.

H words

- In an SVD decomposition we set $\mathbf{Z}^{\top}=\boldsymbol{\Sigma}_{k} V_{K}^{\top}$.
- The columns of V_{k} are equivalently: the top k eigenvectors of $X^{\top} \mathrm{X}$.

Example: Latent Semantic Analysis

Term Document Matrix \mathbf{X}

doc_1	0	0	1	0	0	1	1	0	0
doc_2	0	0	0	1	0	1	0	0	0
:	1	1	0	1	0	0	0	1	0
	0	0	0	0	0	0	0	1	1
doc_n	1	0	0	0	0	0	0	1	1

Low-Rank Approximation via SVD

- Just like with documents, \vec{z}_{a} and \vec{z}_{b} will tend to have high dot product if word $_{a}$ and word ${ }_{b}$ appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z}^{\top}=\boldsymbol{\Sigma}_{k} V_{K}^{\top}$.
- The columns of V_{k} are equivalently: the top k eigenvectors of $X^{\top} X$.
- Claim: Z^{\top} is the best rank-k approximation of $\mathbf{X}^{\top} \mathbf{X}$. I.e., $\arg \min _{\text {rank }-k B}\left\|\mathbf{X}^{\top} \mathbf{X}-\mathrm{B}\right\|_{F}$

Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{\top} \mathbf{X}$: where $\left(\mathbf{X}^{\top} \mathbf{X}\right)_{a, b}$ is the number of documents that both word ${ }_{a}$ and word $_{b}$ appear in.

Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{\top} \mathbf{X}$: where $\left(\mathbf{X}^{\top} \mathbf{X}\right)_{a, b}$ is the number of documents that both word ${ }_{a}$ and word $_{b}$ appear in.
- Think about $X^{\top} X$ as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word ${ }_{a}$ and $w o r d_{b}$.

Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{\top} \mathbf{X}$: where $\left(\mathbf{X}^{\top} \mathbf{X}\right)_{a, b}$ is the number of documents that both word $_{a}$ and word ${ }_{b}$ appear in.
- Think about $\mathbf{X}^{\top} \mathbf{X}$ as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word ${ }_{a}$ and $w^{w} \mathrm{rd}_{\mathrm{b}}$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.

Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{\top} \mathbf{X}$: where $\left(\mathbf{X}^{\top} \mathbf{X}\right)_{a, b}$ is the number of documents that both word $_{a}$ and word ${ }_{b}$ appear in.
- Think about $X^{\top} X$ as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word ${ }_{a}$ and $w^{w} \mathrm{rd}_{\mathrm{b}}$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.
- Replacing $X^{\top} X$ with these different metrics (sometimes appropriately transformed) leads to popylar word embedding algorithms: word2vec, GloVe, fastText, et\&.

Example: Word Embedding

Example: Word Embedding

Note: word2vec is typically described as a neural-network method, but can be viewed as just a low-rank approximation of a specific similarity matrix. Neural word embedding as implicit matrix factorization, Levy and Goldberg.

