J

COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2023.

Lecture 18

- Problem Set 3 is due next Friday at 11:59pm.
- I made a small change to Probl<u>em 1.4</u>: replacing $\sum_{i=1}^{n} \sigma_i(\mathbf{A})^2$ with $\sum_{i=1}^{\operatorname{rank}(\mathbf{A})} \sigma_i(\mathbf{A})^2$. This don't change the solution to the problem, but as we will see will better match the conventions for SVD that I introduce today.
- Linear algebra review session Monday 2-3pm. Location TbD.

Summary

Last Class

Finish up optimal low-rank approximation via eigendecomposition.

• Eigenvalue spectrum as a way of measuring low-rank approximation error.

This Class: The SVD and Application of Low-Rank Approximation Beyond Compression

The Singular Value Decomposition (SVD) and its connection to eigendecomposition and low-rank approximation.

Low-rank matrix completion (predicting missing measurements using low-rank structure).

<u>En</u>tity embeddings (e.g., word embeddings, node embeddings).

• Low-rank approximation for non-linear dimensionality __reduction.

Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices.

Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $X \in \mathbb{R}^{n \times d}$ with rank(X) = r can be written as $X = U\Sigma V^T$.

- U has orthonormal columns $\vec{u}_1, \ldots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- <u>V</u> has orthonormal columns $\vec{v}_1, \ldots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).

Writing
$$\mathbf{X} \in \mathbb{R}^{n \times d}$$
 in its singular value decomposition $\underline{\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}}$:

$$\underbrace{\mathbf{X}^{T} \mathbf{X} = (\mathbf{U} \leq \mathbf{V}^{T})^{T} (\mathbf{U} \leq \mathbf{V}^{T})}_{\mathbf{V} \leq \mathbf{V}^{T} (\mathbf{U} \leq \mathbf{V}^{T})}$$

$$\underbrace{\mathbf{V} \leq \mathbf{U}^{T} (\mathbf{U} \leq \mathbf{V}^{T})}_{\mathbf{V} \leq \mathbf{V} \leq \mathbf{V}^{T}} = \mathbf{V} \leq \mathbf{V}^{T} \mathbf{V}^{T}$$

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$: $\mathbf{X}^{T} \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$: $\mathbf{X}^{T} \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} = \mathbf{V} \mathbf{\Sigma}_{-}^{2} \mathbf{V}^{T}$

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$: $\mathbf{X}^{T} \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} = \mathbf{V} \mathbf{\Sigma}^{2} \mathbf{V}^{T}$ (the eigendecomposition)

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$: $\mathbf{X}^{T} \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} = \mathbf{V} \mathbf{\Sigma}^{2} \mathbf{V}^{T}$ (the eigendecomposition) Similarly: $\mathbf{X} \mathbf{X}^{T} = \underbrace{\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} = \mathbf{U} \mathbf{\Sigma}^{2} \mathbf{U}^{T}$.

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$: $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\mathbf{\Sigma}^{2}\mathbf{V}^{\mathsf{T}}$ (the eigendecomposition) λi(AB Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$. The left and right singular vectors are the eigenvectors of the d=(A-XI)=D cova<u>riance matrix X^TX</u> and the <u>gram matrix XX^T respectively.</u> $G_{i}(\chi)^{2} = \lambda_{i}(\chi^{T}\chi) = \lambda_{i}(\chi\chi^{T})$ (A-XI)V Av-Xv Av-Xv=0 $n \left[X \times \overline{X} \right]_{i_1} = \langle X_{i_1}, X_{i_2} \rangle$ $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \mathsf{rank}(\mathbf{X})}$: matrix with orthonormal columns

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$: $\mathbf{X}^{T} \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} = \mathbf{V} \mathbf{\Sigma}^{2} \mathbf{V}^{T}$ (the eigendecomposition) Similarly: $\mathbf{X} \mathbf{X}^{T} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} = \mathbf{U} \mathbf{\Sigma}^{2} \mathbf{U}^{T}$.

The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^T \mathbf{X}$ and the gram matrix $\mathbf{X} \mathbf{X}^T$ respectively. So, letting $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \ldots, \vec{v}_k$, we know that $\mathbf{X} \mathbf{V}_k \mathbf{V}_k^T$ is the best rank-*k* approximation to **X** (given by PCA).

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$: $\mathbf{X}^{T} \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} = \mathbf{V} \mathbf{\Sigma}^{2} \mathbf{V}^{T}$ (the eigendecomposition) Similarly: $\mathbf{X} \mathbf{X}^{T} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} = \mathbf{U} \mathbf{\Sigma}^{2} \mathbf{U}^{T}$.

The left and right singular vectors are the eigenvectors of the covariance matrix $X^T X$ and the gram matrix XX^T respectively.

So, letting $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \ldots, \vec{v}_k$, we know that $\underline{\mathbf{XV}_k}\mathbf{V}_k^{\mathsf{T}}$ is the best rank-*k* approximation to **X** (given by PCA).

What about $\mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \ldots, \vec{u}_k$?

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$: $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\mathbf{\Sigma}^{2}\mathbf{V}^{\mathsf{T}}$ (the eigendecomposition) Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ and the gram matrix $\mathbf{X}\mathbf{X}^{\mathsf{T}}$ respectively.

So, letting $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \ldots, \vec{v}_k$, we know that $XV_kV_k^T$ is the best rank-k approximation to X (given by PCA).

1 RA What about $\mathbf{U}_k \mathbf{U}_k^T \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \ldots, \vec{u}_k$? \times \times / / / / / / / \times / / / / / /Gives exactly the same approximation!

 $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \mathsf{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \dots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \mathsf{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \ldots$ (right singular vectors), $\Sigma \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

Х

The best low-rank approximation to X: $X_{k} = \arg \min_{\operatorname{rank} - k} \underset{B \in \mathbb{R}^{n \times d}}{\operatorname{B} | |X - B||_{F}} \text{ is given by:}$ $X_{k} = XV_{k}V_{k}^{T} = U_{k}U_{k}^{T}X$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k

Row (data point) compression

10000* bathrooms+ 10* (sq. ft.) \approx list price												
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price						
home 1	2	2	1800	2	200,000	195,000						
home 2	4	2.5	2700	1	300,000	310,000						
home n	5	3.5	3600	3	450,000	450,000						

Column (feature) compression

The best low-rank approximation to X: $X_k = \arg \min_{\operatorname{rank} - k} {}_{B \in \mathbb{R}^{n \times d}} \|X - B\|_F$ is given by:

 $\mathbf{X}_{k} = \mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathrm{T}} = \mathbf{U}_{k}\mathbf{U}_{k}^{\mathrm{T}}\mathbf{X}$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k

The best low-rank approximation to X: $X_k = \arg \min_{\operatorname{rank} -k} {}_{B \in \mathbb{R}^{n \times d}} \|X - B\|_F$ is given by:

$$\mathbf{X}_{k} = \mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathrm{T}} = \mathbf{U}_{k}\mathbf{U}_{k}^{\mathrm{T}}\mathbf{X}$$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k

The best low-rank approximation to X: $X_k = \arg \min_{\operatorname{rank} - k} \mathop{\mathsf{B} \in \mathbb{R}^{n \times d}} \|X - B\|_F$ is given by:

$$\mathbf{X}_{k} = \mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathsf{T}} = \mathbf{U}_{k}\mathbf{U}_{k}^{\mathsf{T}}\mathbf{X} = \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{\mathsf{T}}$$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k

SVD Review

Applications of Low-Rank Approximation Beyond Compression

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-*k* (i.e., well approximated by a rank *k* matrix).

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-*k* (i.e., well approximated by a rank *k* matrix). Classic example: the Netflix prize problem.

Х	Movies								
1	5	3	3	1	4	4	4	3	5
	4	3	3	1	4	4	5	3	5
	3	3	3	2	3	3	3	3	3
Users	4	3	3	4	4	4	4	3	3
	3	3	3	2	3	3	3	3	3
	2 (5) 3	4	4	4	4	4	5
	1	3	3	2	3	3	3	1	2

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-*k* (i.e., well approximated by a rank *k* matrix). Classic example: the Netflix prize problem.

Consider a matrix $X \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-*k* (i.e., well approximated by a rank *k* matrix). Classic example: the Netflix prize problem.

Consider a matrix $X \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-*k* (i.e., well approximated by a rank *k* matrix). Classic example: the Netflix prize problem.

Consider a matrix $X \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-*k* (i.e., well approximated by a rank *k* matrix). Classic example: the Netflix prize problem.

Solve:
$$Y = \underset{B \text{ s.t. rank}(B) \leq k}{\operatorname{arg min}} \sum_{observed (j,k)} [X_{j,k} - B_{j,k}]^2$$

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-*k* (i.e., well approximated by a rank *k* matrix). Classic example: the Netflix prize problem. $(\alpha, \chi) \leq \alpha \wedge (n, \chi)$

Dimensionality reduction embeds *d*-dimensional vectors into *k* dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Dimensionality reduction embeds *d*-dimensional vectors into *k* dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Classic Approach: Convert each item into a (very) high-dimensional feature vector and then apply low-rank approximation.

+ If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^{\mathsf{T}}\|_{F}$ is small, then on average,

$$\underline{\mathbf{X}_{i,a}} \approx (\mathbf{Y}\mathbf{Z}^{\mathsf{T}})_{i,a} = \langle \vec{\mathbf{y}}_i, \vec{\mathbf{z}}_a \rangle.$$

• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^{\mathsf{T}}\|_{\mathsf{F}}$ is small, then on average,

$$\mathbf{X}_{i,a} \approx (\mathbf{Y}\mathbf{Z}^{\mathsf{T}})_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

• I.e., $\langle \vec{y}_i, \vec{z}_a \rangle \approx 1$ when doc_i contains $word_a$.

- I.e., $\langle \vec{y}_i, \vec{z}_a \rangle \approx 1$ when doc_i contains $word_a$.
- If doc_i and doc_j both contain $word_a$, $\langle \vec{y_i}, \vec{z_a} \rangle \approx \langle \vec{y_j}, \vec{z_a} \rangle \approx 1$.

If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$

If doc_i and doc_j both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \approx 1$

Another View: Each column of **Y** represents a 'topic'. $\vec{y_i}(j)$ indicates how much doc_i belongs to topic *j*. $\vec{z_a}(j)$ indicates how much *word*_a associates with that topic.

• Just like with documents, $\vec{z_a}$ and $\vec{z_b}$ will tend to have high dot product if word_a and word_b appear in many of the same documents.

- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if word_a and word_b appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z}^{\! T} = \boldsymbol{\Sigma}_{\! \textit{k}} \mathbf{V}_{\! \textit{K}}^{\! T}$
- The columns of V_k are equivalently: the top k eigenvectors of $X^T X$. $V_k = \left[\begin{array}{c} X^T \\ X^T \\$

- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if *word*_a and *word*_b appear in many of the same documents.
- In an SVD decomposition we set $\boldsymbol{Z}^{\text{T}} = \boldsymbol{\Sigma}_{\text{R}} \boldsymbol{V}_{\text{K}}^{\text{T}}.$
- The columns of V_k are equivalently: the top k eigenvectors of X^TX.
- Claim: ZZ^T is the best rank-*k* approximation of X^TX . I.e., arg min_{rank} -*k* B $||X^TX - B||_F$

LSA gives a way of embedding words into *k*-dimensional space.

• Embedding is via low-rank approximation of **X**^T**X**: where (**X**^T**X**)_{*a,b*} is the number of documents that both *word*_{*a*} and *word*_{*b*} appear in.

LSA gives a way of embedding words into *k*-dimensional space.

- Embedding is via low-rank approximation of **X**^T**X**: where (**X**^T**X**)_{*a,b*} is the number of documents that both *word*_{*a*} and *word*_{*b*} appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word_a and word_b.

LSA gives a way of embedding words into *k*-dimensional space.

- Embedding is via low-rank approximation of **X**^T**X**: where (**X**^T**X**)_{*a,b*} is the number of documents that both *word*_{*a*} and *word*_{*b*} appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word_a and word_b.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of *w* words, in similar positions of documents in different languages, etc.

LSA gives a way of embedding words into *k*-dimensional space.

- Embedding is via low-rank approximation of **X**^T**X**: where (**X**^T**X**)_{*a,b*} is the number of documents that both *word*_{*a*} and *word*_{*b*} appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word_a and word_b.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of *w* words, in similar positions of documents in different languages, etc.
- Replacing X^TX with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastText, etc.

Note: word2vec is typically described as a neural-network method, but can be viewed as just a low-rank approximation of a specific similarity matrix. *Neural word embedding as implicit matrix factorization*, Levy and Goldberg.