COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 17

Logistics

- Problem Set 3 is due Friday 11/17, 11:59pm.
- Questions about participation grade.
- Additional linear algebra review office hours - Monday 11/13 3:00-4:00pm.

Basic Set Up

Reminder of Set Up: Assume that $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}. Let $\mathrm{X} \in \mathbb{R}^{n \times d}$ be the data matrix. d-dimensional space

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{V V}^{\top} \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V}.
- $X V V^{\top}$ gives the closest approximation to X with rows in \mathcal{V}.
- The rows of XVV^{\top} are approximations to our input points in \mathcal{V}. The rows of XV are compressions of these approximate points.

Last Class

- V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
\underset{\text { orthonormal } \mathrm{V} \in \mathbb{R}^{d \times k}}{\arg \min }\left\|\mathrm{X}-\mathrm{XV} \mathrm{~V}^{\top}\right\|_{F}^{2}=\underset{\text { orthonormal } \mathrm{V} \in \mathbb{R}^{d \times k}}{\arg \max }\|\mathrm{XV}\|_{F}^{2}
$$

- This optimal V can be found greedily. Equivalently, by computing the top k eigenvectors of $X^{\top} X$.

This Class:

- Finish up discussion of how optimal V is computed via eigendecomposition.
- How do we assess the error of this optimal V.
- Connection to the singular value decomposition.

Solution via Eigendecomposition

V maximizing $\|\mathrm{XV}\|_{F}^{2}$ is given by:

$$
\|\mathrm{XV}\|_{F}^{2}=\sum_{j=1}^{k}\left\|\mathbf{X} \vec{v}_{j}\right\|_{2}^{2}=\sum_{j=1}^{k} \vec{v}_{j}^{\top} \mathbf{X}^{\top} \mathbf{X} \vec{v}_{j}
$$

Can find the columns of $\mathrm{V}, \overrightarrow{\mathrm{V}}_{1}, \ldots, \vec{v}_{k}$ greedily.

$$
\begin{gathered}
\vec{v}_{1}=\underset{\vec{v} \text { with }\|v\|_{2}=1}{\arg \max }\|X \vec{X}\|_{2}^{2} \vec{V}^{\top} X^{\top} X \vec{V} . \\
\vec{v}_{2}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \vec{v}_{1}\right\rangle=0}{\arg \max } \vec{V}^{\top} X^{\top} X \vec{V} . \\
\vec{v}_{k}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\overrightarrow{\left\langle\vec{v}, \vec{v}_{j}\right\rangle=0} \underset{\forall j<k}{\arg \max } \vec{v}^{\top} X^{\top} X \vec{V} .\right.}{ } .
\end{gathered}
$$

$\vec{v}_{1}, \ldots, \vec{V}_{k}$ are the top k eigenvectors of $X^{\top} X$ by the Courant-Fischer Principle.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Review of Eigenvectors and Eigendecomposition

Eigenvector: $\vec{x} \in \mathbb{R}^{d}$ is an eigenvector of a matrix $\mathrm{A} \in \mathbb{R}^{d \times d}$ if $A \vec{x}=\lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

- That is, A just 'stretches' x.
- If A is symmetric, can find d orthonormal eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{d}$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

$$
\mathrm{AV}=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\mathrm{A} \vec{v}_{1} & \mathrm{~A} \overrightarrow{\mathrm{~V}}_{2} & \cdots & \mathrm{~A} \vec{v}_{d} \\
\mid & \mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\lambda_{1} \vec{v}_{1} & \lambda_{2} \vec{v}_{2} & \cdots & \lambda \vec{v}_{d} \\
\mid & \mid & \mid & \mid
\end{array}\right]=\mathrm{V} \boldsymbol{\Lambda}
$$

Yields eigendecomposition: $\mathrm{AVV}^{\top}=\mathrm{A}=\mathrm{VAV}^{\top}$.

Review of Eigenvectors and Eigendecomposition

Typically order the eigenvectors in decreasing order:
$\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{d}$.

Low-Rank Approximation via Eigendecomposition

Low-Rank Approximation via Eigendecomposition

Upshot: Letting V_{k} have columns $\overrightarrow{\mathrm{V}}_{1}, \ldots, \vec{V}_{k}$ corresponding to the top k eigenvectors of the covariance matrix $X^{\top} X, V_{k}$ is the orthogonal basis minimizing

$$
\left\|\mathrm{X}-\mathrm{XV} \mathrm{~V}_{k} \mathrm{~V}_{k}^{\top}\right\|_{\mathrm{F}}^{2}
$$

This is principal component analysis (PCA).
How accurate is this low-rank approximation? Can understand using eigenvalues of $X^{\top} X$.

```
\vec{x}},\ldots,\mp@subsup{\vec{x}}{n}{}\in\mp@subsup{\mathbb{R}}{}{d}:\mathrm{ data points, }X\in\mp@subsup{\mathbb{R}}{}{n\timesd}\mathrm{ : data matrix, }\mp@subsup{\vec{v}}{1}{},\ldots,\mp@subsup{\vec{v}}{k}{}\in\mp@subsup{\mathbb{R}}{}{d}:\mathrm{ top
eigenvectors of }\mp@subsup{\mathbf{X}}{}{\top}\mathbf{X},\mp@subsup{V}{k}{}\in\mp@subsup{\mathbb{R}}{}{d\timesk}\mathrm{ : matrix with columns }\mp@subsup{\vec{v}}{1}{},\ldots,\mp@subsup{\vec{v}}{k}{}\mathrm{ .
```


Spectrum Analysis

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ (the top k principal components). Approximation error is:

$$
\begin{aligned}
\left\|\mathbf{X}-\mathbf{X V}_{k} \mathbf{V}_{k}^{\top}\right\|_{F}^{2} & =\|\mathbf{X}\|_{F}^{2} \operatorname{tr}\left(\mathbf{X}^{\top} \mathbf{X}\right)-\left\|\mathbf{X V}_{k} \mathbf{V}_{k}^{\top}\right\|_{F}^{2} \operatorname{tr}\left(\mathbf{V}_{k}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{V}_{k}\right) \\
& =\sum_{i=1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)-\sum_{i=1}^{k} \overrightarrow{\mathrm{~V}}_{i}^{\top} \mathbf{X}^{\top} \mathbf{X} \vec{v}_{i} \\
& =\sum_{i=1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)-\sum_{i=1}^{k} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)=\sum_{i=k+1}^{d} \lambda_{i}\left(\mathrm{X}^{\top} \mathbf{X}\right)
\end{aligned}
$$

- Problem Set: For any matrix $A,\|A\|_{F}^{2}=\sum_{i=1}^{d}\left\|\vec{a}_{i}\right\|_{2}^{2}=\operatorname{tr}\left(A^{\top} A\right)$ (sum of diagonal entries = sum eigenvalues).
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{x} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$) is:

$$
\left\|\mathbf{X}-\mathbf{X V}_{k} \mathbf{V}_{k}^{\top}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \lambda_{i}\left(\mathbf{X}^{\top} \mathbf{X}\right)
$$

784 dimensional vec

- Choose k to balance accuracy/compression - often at an 'elbow'.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}:$ top

Spectrum Analysis

Plotting the spectrum of $\mathbf{X}^{\top} \mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are to a low-dimensional subspace).

784 dimensional vectors

784 dimensional vectors

eigender
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Spectrum Analysis

Exercises:

1. Show that the eigenvalues of $X^{\top} X$ are always positive. Hint: Use that $\lambda_{j}=\vec{v}_{j}^{\top} X^{\top} X \vec{v}_{j}$.
2. Show that for symmetric A, the trace is the sum of eigenvalues: $\operatorname{tr}(\mathrm{A})=\sum_{i=1}^{n} \lambda_{i}(\mathrm{~A})$. Hint: First prove the cyclic property of trace, that for any $\mathrm{MN}, \operatorname{tr}(\mathrm{MN})=\operatorname{tr}(\mathrm{NM})$ and then apply this to A's eigendecomposition

Summary

- Many (most) datasets can be approximated via projection onto a low-dimensional subspace.
- Find this subspace via a maximization problem:

$$
\max _{\text {orthonormal } \mathrm{V}}\|\mathrm{XV}\|_{F}^{2} \text {. }
$$

- Greedy solution via eigendecomposition of $\mathbf{X}^{\top} \mathbf{X}$.
- Columns of V are the top eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$.
- Error of best low-rank approximation (compressibility of data) is determined by the tail of $X^{\top} X^{\prime}$ s eigenvalue spectrum.

Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features are correlated.

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
home n	5	3.5	3600	3	450,000	450,000

Our compressed dataset is $\mathrm{C}=\mathrm{XV}_{k}$ where the columns of V_{k} are the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$.

Observe that $\mathbf{C}^{\top} \mathbf{C}=\boldsymbol{\Lambda}_{k}$
$C^{\top} C$ is diagonal. I.e., all columns are orthogonal to each other, and correlations have been removed. Maximal compression.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

- Computing $X^{\top} X$ requires $O\left(n d^{2}\right)$ time.
- Computing its full eigendecomposition to obtain $\vec{v}_{1}, \ldots, \vec{v}_{k}$ requires $O\left(d^{3}\right)$ time (similar to the inverse $\left.\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)$.

Many faster iterative and randomized methods. Runtime is roughly õ (ndk) to output just to top k eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

- Will see in a few classes (power method, Krylov methods).
- One of the most intensively studied problems in numerical computation.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

