COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2023. Lecture 17

- Problem Set 3 is due Friday 11/17, 11:59pm.
- Questions about participation grade.
- Additional linear algebra review office hours Monday 11/13 3:00-4:00pm.

Basic Set Up

Reminder of Set Up: Assume that $\vec{x_1}, \ldots, \vec{x_n}$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{W}^{\mathsf{T}} \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .
- + XVV^{T} gives the closest approximation to X with rows in $\mathcal{V}.$
- The rows of XVV^T are approximations to our input points in V.
 The rows of XV are compressions of these approximate points.

Last Class

• V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

• This optimal V can be found greedily. Equivalently, by computing the top k eigenvectors of X^TX.

This Class:

- Finish up discussion of how optimal **V** is computed via eigendecomposition.
- How do we assess the error of this optimal V.
- Connection to the singular value decomposition.

Solution via Eigendecomposition

V maximizing $\|\mathbf{XV}\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_{F}^{2} = \sum_{j=1}^{k} \|\mathbf{X}\vec{v}_{j}\|_{2}^{2} = \sum_{j=1}^{k} \vec{v}_{j}^{T}\mathbf{X}^{T}\mathbf{X}\vec{v}_{j}$$

Can find the columns of V, $\vec{v}_1, \ldots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\arg \max} \|X\vec{v}\|_2^2 \vec{v}^T X^T X \vec{v}.$$

$$\vec{v}_2 = \underset{\vec{v} \text{ with } \|v\|_2=1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{V}_k = \arg \max_{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_j \rangle = 0 \ \forall j < k} \vec{V}^T \mathbf{X}^T \mathbf{X} \vec{v}$$

 $\vec{v}_1, \ldots, \vec{v}_k$ are the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ by the Courant-Fischer Principle.

Eigenvector: $\vec{x} \in \mathbb{R}^d$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A}\vec{x} = \lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

- That is, **A** just 'stretches' x.
- If **A** is symmetric, can find *d* orthonormal eigenvectors $\vec{v}_1, \ldots, \vec{v}_d$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

$$\mathbf{AV} = \begin{bmatrix} | & | & | & | \\ \mathbf{A}\vec{v}_1 & \mathbf{A}\vec{v}_2 & \cdots & \mathbf{A}\vec{v}_d \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1\vec{v}_1 & \lambda_2\vec{v}_2 & \cdots & \lambda\vec{v}_d \\ | & | & | & | \end{bmatrix} = \mathbf{VA}$$

Yields eigendecomposition: $AVV^T = A = V\Lambda V^T$.

Review of Eigenvectors and Eigendecomposition

Typically order the eigenvectors in decreasing order: $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_d.$

Low-Rank Approximation via Eigendecomposition

Low-Rank Approximation via Eigendecomposition

Upshot: Letting V_k have columns $\vec{v}_1, \ldots, \vec{v}_k$ corresponding to the top *k* eigenvectors of the covariance matrix $X^T X$, V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2.$$

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand using eigenvalues of **X**^T**X**.

Let $\vec{v}_1, \ldots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\begin{aligned} \|\mathbf{X} - \mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2} &= \|\mathbf{X}\|_{F}^{2}\mathsf{tr}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) - \|\mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2}\mathsf{tr}(\mathbf{V}_{k}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{V}_{k}) \\ &= \sum_{i=1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) - \sum_{i=1}^{k} \vec{v}_{i}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\vec{v}_{i} \\ &= \sum_{i=1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) - \sum_{i=1}^{k} \lambda_{i}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = \sum_{i=k+1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) \end{aligned}$$

• **Problem Set:** For any matrix **A**, $\|\mathbf{A}\|_{F}^{2} = \sum_{i=1}^{d} \|\vec{a}_{i}\|_{2}^{2} = tr(\mathbf{A}^{T}\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

Claim: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$) is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2 = \sum_{i=k+1}^d \lambda_i (\mathbf{X}^T \mathbf{X})$$

• Choose *k* to balance accuracy/compression – often at an 'elbow'.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: top

11

Plotting the spectrum of $X^T X$ (its eigenvalues) shows how compressible X is using low-rank approximation (i.e., how close $\vec{x_1}, \ldots, \vec{x_n}$ are to a low-dimensional subspace).

Exercises:

- 1. Show that the eigenvalues of $\mathbf{X}^T \mathbf{X}$ are always positive. Hint: Use that $\lambda_j = \vec{v}_j^T \mathbf{X}^T \mathbf{X} \vec{v}_j$.
- 2. Show that for symmetric **A**, the trace is the sum of eigenvalues: $tr(A) = \sum_{i=1}^{n} \lambda_i(A)$. Hint: First prove the cyclic property of trace, that for any MN, tr(MN) = tr(NM) and then apply this to A's eigendecomposition

- Many (most) datasets can be approximated via projection onto a low-dimensional subspace.
- Find this subspace via a maximization problem:

 $\max_{\text{orthonormal }V} \|XV\|_F^2.$

- Greedy solution via eigendecomposition of X^TX.
- Columns of V are the top eigenvectors of $X^T X$.
- Error of best low-rank approximation (compressibility of data) is determined by the tail of X^TX's eigenvalue spectrum.

Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features are correlated.

10000* bathrooms+ 10* (sq. ft.) ≈ list price						
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
			.			•
	•		.	•	•	•
home n	5	3.5	3600	3	450,000	450,000

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of $X^T X$.

Observe that $\mathbf{C}^{\mathsf{T}}\mathbf{C} = \mathbf{\Lambda}_{k}$

C^TC is diagonal. I.e., all columns are orthogonal to each other, and correlations have been removed. Maximal compression.

Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

- Computing $X^T X$ requires $O(nd^2)$ time.
- Computing its full eigendecomposition to obtain $\vec{v}_1, \ldots, \vec{v}_k$ requires $O(d^3)$ time (similar to the inverse $(X^TX)^{-1}$).

Many faster iterative and randomized methods. Runtime is roughly $\tilde{O}(ndk)$ to output just to top k eigenvectors $\vec{v}_1, \ldots, \vec{v}_k$.

- Will see in a few classes (power method, Krylov methods).
- One of the most intensively studied problems in numerical computation.