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Logistics

• We released Problem Set 3 last night. It is due 11/17 at 11:59pm.

• Doing the first two Core Competency questions early might be
helpful if you need linear algebra review.
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Summary

Last Class:

• No-distortion embeddings for data lying in a k-dimensional
subspace via an orthonormal basis V ∈ Rd×k for that subspace.

• View as low-rank matrix factorization. Introduce concept of
low-rank approximation.

• Idea of approximating a data matrix X with XVVT when the data
points lie close to the subspace spanned by V’s columns.

This Class:

• ‘Dual view’ of low-rank approximation: data points that can be
approximately reconstructed from a few basis vectors vs.
linearly dependent features.

• How to find an optimal orthogonal basis V ∈ Rd×k to minimize
∥X− XVVT∥2F. 3



Low-Rank Factorization

Claim: If x⃗1, . . . , x⃗n lie in a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be written as

X = XVVT (implies rank(X) ≤ k)

• VVT is a projection matrix, which projects the rows of X (the data
points x⃗1, . . . , x⃗n onto the subspace V .

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 4



Low-Rank Approximation

Claim: If x⃗1, . . . , x⃗n lie close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as:

X ≈ XVVT

Note: XVVT has rank k. It is a low-rank approximation of X.

XVVT = argmin
B with rows in V

∥X− B∥2F =
∑
i,j

(Xi,j − Bi,j)
2.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 5



Low-Rank Approximation

So Far: If x⃗1, . . . , x⃗n lie close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as:

X ≈ XVVT.

This is the closest approximation to X with rows in V (i.e., in the
column span of V).

• Letting VVTx⃗i, VVTx⃗j be the ith and jth projected data points,

∥VVTx⃗i − VVTx⃗j∥2 = ∥VTVVTx⃗i − VTVVTx⃗j∥2. = ∥VTx⃗i − VTx⃗j∥2.

• I.e., we can use the rows of XV ∈ Rn×k as a compressed
approximate data set.

Key question is how to find the subspace V and correspondingly V.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 6



Properties of Projection Matrices

Quick Exercise 1 : Show that VVT is idempotent. I.e.,
(VVT)(VVT)⃗y = (VVT)⃗y for any y⃗ ∈ Rd.

Quick Exercise 2: Show that VVT(I− VVT) = 0 ( the projection is
orthogonal to its complement).
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Pythagorean Theorem

Pythagorean Theorem: For any orthonormal V ∈ Rd×k and any
y⃗ ∈ Rd,

∥⃗y∥22 = ∥(VVT)⃗y∥22 + ∥⃗y− (VVT)⃗y∥22.
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A Step Back: Why Low-Rank Approximation?

Question: Why might we expect x⃗1, . . . , x⃗n ∈ Rd to lie close to a
k-dimensional subspace?

• The rows of X can be approximately reconstructed from a basis
of k vectors.
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Dual View of Low-Rank Approximation

Question: Why might we expect x⃗1, . . . , x⃗n ∈ Rd to lie close to a
k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

10



Best Fit Subspace

If x⃗1, . . . , x⃗n are close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as
XVVT. XV gives optimal embedding of X in V .

How do we find V (equivilantly V)?

argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F =
∑
i,j

(Xi,j − (XVVT)i,j)
2 =

n∑
i=1

∥⃗xi − VVTx⃗i∥22 argmin
orthonormal V∈Rd×k

∥X∥2F − ∥XVVT∥2F =
n∑
i=1

∥⃗xi∥22 − ∥VVTx⃗i∥22 argmax
orthonormal V∈Rd×k

∥XVVT∥2F =
n∑
i=1

∥VVTx⃗i∥22

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 11



Solution via Eigendecomposition

V minimizing ∥X− XVVT∥2F is given by:

argmax
orthonormal V∈Rd×k

∥XV∥2F =
n∑
i=1

∥VTx⃗i∥22 =
k∑

j=1

∥X⃗vj∥22

Surprisingly, can find the columns of V, v⃗1, . . . , v⃗k greedily.

v⃗1 = argmax
v⃗ with ∥v∥2=1

∥X⃗v∥22v⃗TXTX⃗v.

v⃗2 = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗v1⟩=0

v⃗TXTX⃗v.

. . .
v⃗k = argmax

v⃗ with ∥v∥2=1, ⟨⃗v,⃗vj⟩=0 ∀j<k
v⃗TXTX⃗v.

v⃗1, . . . , v⃗k are the top k eigenvectors of XTX by the Courant-Fischer
Principle.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 12


