COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 16

Logistics

- We released Problem Set 3 last night. It is due 11/17 at 11:59pm.
- Doing the first two Core Competency questions early might be helpful if you need linear algebra review.

Summary

Last Class:

- No-distortion embeddings for data lying in a k-dimensional subspace via an orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$ for that subspace.
- View as low-rank matrix factorization. Introduce concept of low-rank approximation.
- Idea of approximating a data matrix X with XVV^{\top} when the data points lie close to the subspace spanned by V's columns.

This Class:

- 'Dual view' of low-rank approximation: data points that can be approximately reconstructed from a few basis vectors vs. linearly dependent features.
- How to find an optimal orthogonal basis $V \in \mathbb{R}^{d \times k}$ to minimize $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$.

Low-Rank Factorization

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathbf{X}=\mathbf{X V V}^{\top}(\text { implies } \operatorname{rank}(\mathrm{X}) \leq k)
$$

- VV^{\top} is a projection matrix, which projects the rows of X (the data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ onto the subspace \mathcal{V}.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
\mathrm{X} \approx \mathrm{XVV}^{\top}
$$

Note: $\mathbf{X V V}^{\top}$ has rank k. It is a low-rank approximation of \mathbf{X}.

$$
\mathrm{XVV}^{\top}=\underset{\mathrm{B} \text { with rows in } \mathcal{V}}{\arg \min }\|\mathrm{X}-\mathrm{B}\|_{F}^{2}=\sum_{i, j}\left(\mathrm{X}_{i, j}-\mathrm{B}_{i, j}\right)^{2} .
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation

So Far: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
X \approx X V V^{\top}
$$

This is the closest approximation to X with rows in \mathcal{V} (i.e., in the column span of V).

- Letting $\mathrm{VV}^{\top} \vec{x}_{i}, \mathrm{VV}^{\top} \vec{x}_{j}$ be the $i^{\text {th }}$ and $j^{\text {th }}$ projected data points,

$$
\left\|\mathbf{V} \mathbf{V}^{\top} \vec{x}_{i}-\mathbf{V V}^{\top} \vec{x}_{j}\right\|_{2}=\left\|\mathbf{V}^{\top} \mathbf{V} \mathbf{V}^{\top} \vec{x}_{i}-\mathbf{V}^{\top} \mathbf{V} \mathbf{V}^{\top} \vec{x}_{j}\right\|_{2} \cdot=\left\|\mathbf{V}^{\top} \vec{x}_{i}-\mathbf{V}^{\top} \vec{x}_{j}\right\|_{2}
$$

- I.e., we can use the rows of $X V \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Key question is how to find the subspace \mathcal{V} and correspondingly V .
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Properties of Projection Matrices

Quick Exercise 1: Show that V^{\top} is idempotent. I.e., $\left(\mathrm{VV}^{\top}\right)\left(\mathrm{VV}^{\top}\right) \vec{y}=\left(\mathrm{VV}^{\top}\right) \vec{y}$ for any $\vec{y} \in \mathbb{R}^{d}$.

Quick Exercise 2: Show that $\mathrm{VV}^{\top}\left(\mathrm{I}-\mathrm{VV}^{\top}\right)=0$ (the projection is orthogonal to its complement).

Pythagorean Theorem

Pythagorean Theorem: For any orthonormal $\mathbf{V} \in \mathbb{R}^{d \times k}$ and any $\vec{y} \in \mathbb{R}^{d}$,

$$
\|\vec{y}\|_{2}^{2}=\left\|\left(\mathrm{VV}^{\top}\right) \overrightarrow{\|}\right\|_{2}^{2}+\left\|\vec{y}-\left(\mathrm{V} \mathrm{~V}^{\top}\right) \vec{y}\right\|_{2}^{2} .
$$

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- The rows of X can be approximately reconstructed from a basis of k vectors.

784 dimensional vectors

projections onto 15 dimensional space
 orthonormal basis $\mathrm{v}_{1}, \ldots, \mathrm{v}_{15}$

Dual View of Low-Rank Approximation

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors. Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price		bedrooms
home 1	2	2	1800	2	200,000	195,000	home 1	2
home 2	4	2.5	2700	1	300,000	310,000	home 2	4
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
home n	5	3.5	3600	3	450,000	450,000	home n	5^{10}

Best Fit Subspace

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as XVV^{\top}. XV gives optimal embedding of X in \mathcal{V}.

$$
\text { How do we find } \mathcal{V} \text { (equivilantly } \mathrm{V} \text {)? }
$$

$\underset{\underset{i}{\operatorname{orthonormal~} \mathrm{~V} \in \mathbb{R}^{d \times x}}}{\arg \min }\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}=\sum_{i, j}\left(\mathrm{X}_{i, j}-\left(\mathrm{XVV}^{\top}\right)_{i, j}\right)^{2}=\sum_{i=1}^{n}\left\|\vec{x}_{i}-\mathrm{VV}^{\top} \vec{x}_{i}\right\|_{2}^{2}$ orthono

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Solution via Eigendecomposition

V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
\underset{\text { orthonormal } \mathrm{v} \in \mathbb{R}^{d \times k}}{\arg \max }\|\mathrm{XV}\|_{F}^{2}=\sum_{i=1}^{n}\left\|\mathrm{~V}^{\top} \vec{x}_{i}\right\|_{2}^{2}=\sum_{j=1}^{k}\left\|\mathrm{X} \overrightarrow{\mathrm{~V}}_{j}\right\|_{2}^{2}
$$

Surprisingly, can find the columns of $\mathrm{V}, \overrightarrow{\mathrm{v}}_{1}, \ldots, \vec{v}_{k}$ greedily.

$$
\begin{gathered}
\vec{v}_{1}=\underset{\vec{v} \text { with }\|v\|_{2}=1}{\arg \max }\|X \vec{X}\|_{2}^{2} \vec{V}^{\top} X^{\top} X \vec{V} . \\
\vec{v}_{2}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \vec{v}_{1}\right\rangle=0}{\arg \max } \vec{V}^{\top} X^{\top} X \vec{V} . \\
\vec{v}_{k}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\overrightarrow{\left\langle\vec{v}, \vec{v}_{j}\right\rangle=0} \underset{\forall j<k}{\arg \max } \vec{v}^{\top} X^{\top} X \vec{V} .\right.}{ } .
\end{gathered}
$$

$\vec{v}_{1}, \ldots, \vec{v}_{k}$ are the top k eigenvectors of $X^{\top} X$ by the Courant-Fischer Principle.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}:$ data points, $X \in \mathbb{R}^{n \times d}:$ data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogo-
nal basis for subspace $\mathcal{V} . \mathrm{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

