COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2023. Lecture 16

- We released Problem Set 3 last night. It is due 11/17 at 11:59pm.
- Doing the first two Core Competency questions early might be helpful if you need linear algebra review.

Summary

Last Class:

- No-distortion embeddings for data lying in a k-dimensional subspace via an orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$ for that subspace.
- View as low-rank matrix factorization. Introduce concept of low-rank approximation.
- Idea of approximating a data matrix **X** with **XVV**^T when the data points lie close to the subspace spanned by **V**'s columns.

This Class:

- 'Dual view' of low-rank approximation: data points that can be approximately reconstructed from a few basis vectors vs. linearly dependent features.
- How to find an optimal orthogonal basis $V \in \mathbb{R}^{d \times k}$ to minimize $\|X XVV^T\|_F^2$.

Low-Rank Factorization

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}$ (implies rank(\mathbf{X}) $\leq k$)

• VV^T is a projection matrix, which projects the rows of X (the data points $\vec{x}_1, \ldots, \vec{x}_n$ onto the subspace \mathcal{V} .

Low-Rank Approximation

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

 $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}$

Note: XVV^{*T*} has rank *k*. It is a low-rank approximation of **X**.

$$XVV^{\mathsf{T}} = \underset{\mathsf{B with rows in }\mathcal{V}}{\arg\min} \|\mathsf{X} - \mathsf{B}\|_{F}^{2} = \sum_{i,j} (\mathsf{X}_{i,j} - \mathsf{B}_{i,j})^{2}.$$

So Far: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^T.$

This is the closest approximation to X with rows in ${\cal V}$ (i.e., in the column span of V).

- Letting $\mathbf{V}\mathbf{V}^T \vec{x}_i$, $\mathbf{V}\mathbf{V}^T \vec{x}_j$ be the *i*th and *j*th projected data points, $\|\mathbf{V}\mathbf{V}^T \vec{x}_i - \mathbf{V}\mathbf{V}^T \vec{x}_j\|_2 = \|\mathbf{V}^T \mathbf{V}\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \mathbf{V}\mathbf{V}^T \vec{x}_j\|_2 = \|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2$.
- I.e., we can use the rows of $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Key question is how to find the subspace ${\mathcal V}$ and correspondingly ${\textbf V}.$

Quick Exercise 1: Show that VV^T is idempotent. I.e., $(VV^T)(VV^T)\vec{y} = (VV^T)\vec{y}$ for any $\vec{y} \in \mathbb{R}^d$.

Quick Exercise 2: Show that $VV^{T}(I - VV^{T}) = 0$ (the projection is orthogonal to its complement).

Pythagorean Theorem

Pythagorean Theorem: For any orthonormal $\mathbf{V} \in \mathbb{R}^{d \times k}$ and any $\vec{y} \in \mathbb{R}^d$,

$$\|\vec{y}\|_{2}^{2} = \|(\mathbf{V}\mathbf{V}^{T})\vec{y}\|_{2}^{2} + \|\vec{y} - (\mathbf{V}\mathbf{V}^{T})\vec{y}\|_{2}^{2}.$$

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• The rows of X can be approximately reconstructed from a basis of *k* vectors.

orthonormal basis v_1, \dots, v_{15}

Dual View of Low-Rank Approximation

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price		bedrooms
home 1	2	2	1800	2	200,000	195,000	home 1	2
home 2	4	2.5	2700	1	300,000	310,000	home 2	4
		•	•	•	•	•		
•	•	•	•	•	•	•		•
•	•	•	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000	home n	5 ¹⁰

Best Fit Subspace

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . **XV** gives optimal embedding of **X** in \mathcal{V} .

How do we find \mathcal{V} (equivilantly V)?

Solution via Eigendecomposition

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_{F}^{2} = \sum_{i=1}^{n} \|\mathbf{V}^{\mathsf{T}} \vec{x}_{i}\|_{2}^{2} = \sum_{j=1}^{k} \|\mathbf{X} \vec{v}_{j}\|_{2}^{2}$$

Surprisingly, can find the columns of V, $\vec{v}_1, \ldots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\arg \max} \|\mathbf{X} \vec{v}\|_2^2 \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{v}_2 = \underset{\vec{v} \text{ with } \|v\|_2=1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\arg \max} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{V}_k = \arg \max_{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_j \rangle = 0 \ \forall j < k} \vec{V}^T \mathbf{X}^T \mathbf{X}^{\vec{v}}$$

 $\vec{v}_1, \ldots, \vec{v}_k$ are the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ by the Courant-Fischer Principle.