COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 16

Logistics

$$
B / 5 \%
$$

- We released Problem Set 3 last night. It is due 11/17 at 11:59pm.
- Doing the first two Core Competency questions early might be helpful if you need linear algebra review.

Summary

Last Class:

- No-distortion embeddings for data lying in a k-dimensional subspace via an orthonormal basis $V \in \mathbb{R}^{d \times k}$ for that subspace. View as low-rank matrix factorization. Introduce concept of low-rank approximation.
- Idea of approximating a data matrix \mathbf{X} with XVV^{\top} when the data points lie close to the subspace spanned by V's columns.

Summary

Last Class:

- No-distortion embeddings for data lying in a k-dimensional subspace via an orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$ for that subspace.
- View as low-rank matrix factorization. Introduce concept of low-rank approximation.
- Idea of approximating a data matrix X with XVV^{\top} when the data points lie close to the subspace spanned by V's columns.

This Class:

-- 'Dual view' of low-rank approximation: data points that can be approximately reconstructed from a few basis vectors vs. linearly dependent features.

- How to find an optimal orthogonal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$ to minimize $\left[\|\mathrm{X}-\mathrm{XVV}\|_{F}^{\top} \|_{\text {. }}^{2} \quad S V D\right.$, Eije Kaon, PCA

Low-Rank Factorization

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathbf{X}=\mathbf{X V V}^{\top}(\text { implies } \operatorname{rank}(\mathrm{X}) \leq k)
$$

- $\mathbf{V V}^{\top}$ is a projection matrix, which projects the rows of X (the data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ onto the subspace \mathcal{V}.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
\mathrm{X} \approx \mathrm{XVV}^{\top}
$$

d-dimensional space

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$n \times d$ dak $k \times d$

Note: XVV^{\top} has rank k. It is a low-rank approximation of \mathbf{X}.

$$
T_{X V} \in \mathbb{R}^{n \times k}
$$

$$
\underline{X} \approx \underline{X V V^{\top}}
$$

$\sqrt{V} \in n^{k \times k}$
$=I$
Knot canal
$W^{T} \in \mathbb{R}^{2 \times i}$
k-dim. subspace v

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation
Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

Note: XVV^{\top} has rank k. It is a low-rank approximation of X . hal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{V}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation

So Far: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
X \approx X V V^{\top}
$$

This is the closest approximation to X with rows in \mathcal{V} (i.e., in the column span of V).
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation

So Far: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

This is the closest approximation to X with rows in \mathcal{V} (ie., in the column span of V).

- Letting $\mathrm{VV}^{\top} \vec{x}_{j}, \mathrm{VV}^{\top} \vec{x}_{j}$ be the $i^{\text {th }}$ and $j^{t h} I^{\text {projected data points, }}$

$$
\frac{\left\|\mathrm{V}^{\top} \vec{x}_{i}-\mathrm{VV}^{\top} \vec{x}_{j}\right\|_{2}}{\mathbb{R}^{\mathrm{C}}}=\frac{\left\|\mathrm{V}^{\&} \mathrm{~V}^{\top} \vec{x}_{i}-\mathrm{V}^{\top} \mathrm{V}^{\top} \vec{x}_{j}\right\|_{2} \cdot}{\mathbb{R}^{k}}=\left\|\mathrm{V}^{\top} \vec{x}_{i}-\mathrm{V}^{\top} \vec{x}_{j}\right\|_{2} .
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogohal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\overrightarrow{\mathrm{v}}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation

So Far: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
x \approx X^{X V V^{\top}} . \quad\left\|X-X V^{\top}\right\|_{F}^{2} \quad\left(X_{1} x_{1}^{\top} V^{\top} V^{\top}\right)^{\top}
$$ column span of V).

Cod dix Letting $\mathrm{VN}^{\top} \mathrm{V}^{\top} \vec{x}_{i}, V V^{\top} \vec{x}_{j}$ be the $i^{\text {th }}$ and $j^{\text {th }}$ projected data points, $W^{\top} x_{i}$
$\left[W^{\top}\right]\left[v_{1}\right.$

$$
\left\|\mathbf{V V}^{\top} \vec{x}_{i}-\mathrm{VV}^{\top} \vec{x}_{j}\right\|_{2}=\left\|\mathbf{V}^{\top} \mathbf{V V}^{\top} \vec{x}_{i}-\mathrm{V}^{\top} \mathbf{V} \mathbf{V}^{\top} \vec{x}_{j}\right\|_{2 \cdot}=\left\|\mathbf{V}^{\top} \vec{x}_{i}-\mathrm{V}^{\top} \vec{x}_{j}\right\|_{2} .
$$

- I.e., we can use the rows of $\mathrm{XV} \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.
$[V]\left[V^{\top}\right]\left[x_{1}^{\prime} \mid\right.$
$V^{\top} x_{1}, V^{\top} x_{2}$
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogohal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\overrightarrow{\mathrm{v}}_{1}, \ldots, \overrightarrow{\mathrm{~V}}_{\mathrm{k}}$.

Low-Rank Approximation

So Far: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
X \approx X V V^{\top}
$$

This is the closest approximation to X with rows in \mathcal{V} (i.e., in the column span of V).

- Letting $\mathrm{VV}^{\top} \vec{x}_{i}, \mathrm{VV}^{\top} \vec{x}_{j}$ be the $i^{\text {th }}$ and $j^{t h}$ projected data points, $\left(\mid V V^{\top}\left(x_{1}-x_{j}\right)\left\|_{2}^{2}\right\| V V^{\top} \vec{x}_{i}-V^{\top} \vec{x}_{j}\left\|_{2}=\right\| V^{\top} V^{\top} V^{\top} \vec{x}_{i}-V^{\top} V^{\top} \vec{x}_{j} \|_{2}=\xlongequal{\left\|V^{\top} \vec{x}_{i}-V^{\top} \vec{x}_{j}\right\|_{2}}\right.$ I- e^{2}, we can use the rows of $\mathrm{XV} \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Key question is how to find the subspace \mathcal{V} and correspondingly V .
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Properties of Projection Matrices

Quick Exercise 1: Show that VV^{\top} is idempotent. I.e.,

$V\left(V^{T} x^{\top} V^{\top} V^{\top} y\right.$
$W^{T} y^{2}$
Quick Exercise 2: Show that $\mathrm{VV}^{\top}\left(\mathrm{I}-\mathrm{VV}^{\top}\right)=0$ (the projection is orthogonal to its complement).

Pythagorean Theorem
Pythagorean Theorem: For any orthonormal $\mathrm{V} \in \mathbb{R}^{d \times k}$ and any $\vec{y} \in \mathbb{R}^{d}$,

$\|a+b\|_{2}^{2}$
$\langle a+b, a+b\rangle$

$$
\begin{aligned}
& \langle a, a\rangle+z\langle a, b\rangle+\langle b, b\rangle \\
& \|a\|_{2}^{2}+\|b\|_{2}^{2}+2 a_{0}^{\top} b
\end{aligned}
$$

$$
\begin{aligned}
\|y\|_{2}^{2} & =\left\|V^{\top} y+\left(y-W^{\top} y\right)\right\|_{2}^{2} \quad \text { um it } \\
& =\left\|V V^{\top} y\right\|_{2}^{2}+\left\|y-W^{\top} y\right\|_{2}^{2}+2\left(W^{\top} y^{\top}\left(y W_{2}^{\top}\right)\right.
\end{aligned}
$$

$$
\begin{gathered}
2 y^{\top} V^{\top}\left(I-w^{\top}\right) y=0 \\
110 \\
W^{\top} V^{\top} I^{\top}-W^{\top} \\
W^{\top}-W^{\top}=0
\end{gathered}
$$

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- The rows of \mathbf{X} can be approximately reconstructed from a basis of k vectors.

A Step Back: Why Low-Rank Approximation?

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- The rows of X can he apprymately reconstructed from a basis of k vectors. 784 dimensional vectors
projections onto 15 dimensional space

orthonormal basis $\mathrm{v}_{1}, \ldots, \mathrm{v}_{15}$

Dual View of Low-Rank Approximation

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

Dual View of Low-Rank Approximation

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors.

$$
X \sim X V V^{\top}
$$

Dual View of Low-Rank Approximation

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors. Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
.	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	
home n	5	3.5	3600	3	450,000	450,000

Dual View of Low-Rank Approximation

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors. Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
-	-	-	-	-	-	-
-	-	-	-	-	-	
-	-	-	-	-	-	-
home n	5	3.5	3600	3	450,000	450,000

Dual View of Low-Rank Approximation

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors. Linearly Dependent Variables:

Dual View of Low-Rank Approximation

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors. Linearly Dependent Variables:

Best Fit Subspace

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as XVV^{\top}. XV gives optimal embedding of X in \mathcal{V}.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathbb{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Best Fit Subspace

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as XVV^{\top}. XV gives optimal embedding of X in \mathcal{V}.

How do we find \mathcal{V} (equivi $\mathcal{V})$?
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathbb{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Best Fit Subspace

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as XVV^{\top}. XV gives optimal embedding of X in \mathcal{V}.

How do we find \mathcal{V} (equivilantly V)?

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogo-
hal basis for subspace \mathcal{V}. $\mathbb{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Best Fit Subspace

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as XVV^{\top}. XV gives optimal embedding of X in \mathcal{V}.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{V}_{1}, \ldots, \vec{v}_{k}$.

Best Fit Subspace

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as XVV^{\top}. XV gives optimal embedding of X in \mathcal{V}.

How do we find \mathcal{V} (equivilantly V)?

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Best Fit Subspace

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as $\underline{X V V^{\top}}$. XV gives optimal embedding of X in \mathcal{V}.

How do we find \mathcal{V} (equivilantly V)?

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{V}_{1}, \ldots, \vec{v}_{k}$.

Solution via Eigendecomposition

V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
m n^{x}\left\|X W^{\top}\right\|_{F}^{2}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{V}_{k}$.

Solution via Eigendecomposition

V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
\|\mathbf{X V}\|_{F}^{2}=\sum_{i=1}^{n}\left\|\mathbf{V}^{T} \vec{x}_{i}\right\|_{2}^{2}=\sum_{j=1}^{k}\left\|\mathbf{X} \vec{V}_{j}\right\|_{2}^{2}
$$

Surprisingly, can find the columns of $\mathrm{V}, \vec{v}_{1}, \ldots, \vec{v}_{k}$ greedily.

Solution via Eigendecomposition

V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
\|X V\|_{F}^{2}=\sum_{i=1}^{n}\left\|V^{\top} \vec{x}_{i}\right\|_{2}^{2}=\sum_{j=1}^{k}\left\|X X_{j}\right\|_{2}^{2}
$$

Surprisingly, can find the columns of $\mathrm{V}, \vec{v}_{1}, \ldots, \vec{v}_{k}$ greedily.

$$
\vec{v}_{1}=\underset{\nabla \text { with } \| v v_{2}=1}{\arg \max }\|X\|_{2}^{2} .=\left\langle X v, x_{v}\right\rangle=V^{\top} X^{\top} X V
$$

Solution via Eigendecomposition

V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
\|X V\|_{F}^{2}=\sum_{i=1}^{n}\left\|V^{\top} \vec{x}_{i_{2}}\right\|_{2}^{2}=\sum_{j=1}^{k}\left\|X \vec{V}_{j}\right\|_{2}^{2}
$$

Surprisingly, can find the columns of $\mathrm{V}, \vec{v}_{1}, \ldots, \vec{v}_{k}$ greedily.

$$
\vec{V}_{1}=\underset{\vec{v} \text { with }\|v\|_{2}=1}{\arg \max } \vec{v}^{\top} \mathbf{X}^{\top} X \vec{V}
$$

Solution via Eigendecomposition

V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
\|X V\|_{F}^{2}=\sum_{i=1}^{n}\left\|V^{\top} \vec{x}_{i}\right\|_{2}^{2}=\sum_{j=1}^{k}\left\|X \vec{V}_{j}\right\|_{2}^{2}
$$

Surprisingly, can find the columns of $\mathrm{V}, \vec{v}_{1}, \ldots, \vec{v}_{k}$ greedily.

$$
\begin{aligned}
& \vec{v}_{1}=\underset{\vec{v} \text { with }\| \|_{l}=1}{\arg \max } \vec{v}^{\top} X^{\top} X \vec{V} . \quad\left\|X V_{2}\right\|_{2}^{2} \leq\left\|X V_{1}\right\|_{2}^{2} \\
& \vec{v}_{2}=\underset{\vec{v} \text { with }\| \|\| \|_{2}=1,\left\langle\vec{v}, \overrightarrow{v_{i}}\right\rangle=0}{\arg \max } \vec{V}^{\top} X^{\top} X \vec{V} .
\end{aligned}
$$

Solution via Eigendecomposition

V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
\|\mathrm{XV}\|_{F}^{2}=\sum_{i=1}^{n}\left\|\mathbf{V}^{\top} \vec{x}_{i}\right\|_{2}^{2}=\sum_{j=1}^{k} \underline{\underline{\mathrm{X}} \overrightarrow{\mathrm{v}}_{j} \|_{2}^{2}}
$$

Surprisingly, can find the columns of $\mathrm{V}, \vec{v}_{1}, \ldots, \vec{v}_{k}$ greedily.

$$
\begin{aligned}
& \vec{v}_{1}=\underset{\vec{v} \text { with }\|v\|_{2}=1}{\arg \max } \vec{v}^{\top} \mathbf{X}^{\top} X \vec{v} . \\
& \vec{v}_{2}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \overrightarrow{v_{1}}\right\rangle=0}{\arg \max } \vec{v}^{\top} X^{\top} X \vec{V} . \\
& \text {... } \\
& \vec{V}_{k}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{V}, \vec{v}_{j}\right\rangle=0}{\arg \max } \vec{v}^{\top} X^{\top} X \vec{V} .
\end{aligned}
$$

> $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{R} \in \mathbb{R}^{d}$: orthogo- nal basis for subspace \mathcal{V}. $\mathrm{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\overrightarrow{\mathrm{v}}_{1}, \ldots, \vec{v}_{k}$.

Solution via Eigendecomposition

V minimizing $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
\|X V\|_{F}^{2}=\sum_{i=1}^{n}\left\|V^{\top} \vec{x}_{i}\right\|_{2}^{2}=\sum_{j=1}^{k}\left\|X X_{\vec{V}}^{j}\right\|_{2}^{2}
$$

Surprisingly, can find the columns of $\mathrm{V}, \vec{v}_{1}, \ldots, \vec{v}_{k}$ greedily.
$\vec{v}_{1}, \ldots, \vec{v}_{k}$ are the top k eigenvectors of $X^{\top} X$ py the Courant-Fischer Principle.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

