COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2023. Lecture 15

- Midterm grades and solutions are posted on Moodle.
- We'll hand out the midterms at the end of class.
- The class average was $\approx 30/39 = 77\%$.
- See Piazza post for more details. If you aren't happy with your grade, I'm happy to chat about strategies moving forward.

Quiz Question

Question 5	Suppose x=(1,2,3,4) and let y=(y_1, y_2, y_3, y_4) be a random vector where each y _i is
Not complete	independent and is distributed according to a Normal distribution with mean 0 and
Points out of 1.00	variance 1. What is the expected value of $\langle x, y \rangle^2$?
♥ Flag question	Answer:
Edit question	Check

Summary

Last Few Classes: The Johnson-Lindenstrauss Lemma

- Reduce *n* data points in any dimension *d* to $O\left(\frac{\log n/\delta}{\epsilon^2}\right)$ dimensions and preserve (with probability $\geq 1 \delta$) all pairwise distances up to $1 \pm \epsilon$.
- Compression is linear via multiplication with a random, data oblivious, matrix (linear compression)
- Proved via the distributional JL-Lemma which shows that if $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is a random matrix, $\mathbf{\Pi} \vec{y}_2 \approx \|\vec{y}\|$ for any y with high probability.
- Proof of distributional JL via linearity of expectation, linearity of variance, stability of the Gaussian distribution, and an exponential concentration bound for Chi-Squared random variables.

Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA).

- Reduce *d*-dimesional data points to a smaller dimension *m*.
- Like JL, compression is linear by applying a matrix.
- Chose this matrix carefully, taking into account structure of the dataset.
- Can give better compression than random projection (although not directly comparable).

Will be using a fair amount of linear algebra: orthogonal basis, column/row span, eigenvectors, etc.

Embedding with Assumptions

Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace $\mathcal{V} \text{ of } \mathbb{R}^d$. d-dimensional space v_1 v_2 v_2 k-dim. subspace \mathcal{V} v_1 v_2 k-dim. subspace \mathcal{V}

Claim: Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_i, \vec{x}_i :

$$\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2 = \|\vec{x}_i - \vec{x}_j\|_2.$$

• $\mathbf{V}^{\mathsf{T}} \in \mathbb{R}^{k \times d}$ is a linear embedding of $\vec{x}_1, \ldots, \vec{x}_n$ into k dimensions with no distortion.

Dot Product Transformation

Claim: Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{x}_i, \vec{x}_j \in \mathcal{V}$: $\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_i\|_2 = \|\vec{x}_i - \vec{x}_i\|_2.$

Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

- How do we find ${\mathcal V}$ and V?
- How good is the embedding?

Low-Rank Factorization

Claim: $\vec{x_1}, \dots, \vec{x_n}$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write \vec{x}_i as:

$$\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1}\cdot\vec{v}_1 + c_{i,2}\cdot\vec{v}_2 + \ldots + c_{i,k}\cdot\vec{v}_k.$$

• So $\vec{v}_1, \ldots, \vec{v}_k$ span the rows of **X** and thus $rank(\mathbf{X}) \leq k$.

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

Claim: $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- X can be represented by $(n + d) \cdot k$ parameters vs. $n \cdot d$.
- The rows of X are spanned by k vectors: the columns of $V \implies$ the columns of X are spanned by k vectors: the columns of C.

 $\vec{x}_1, \ldots, \vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : *k*-dimensional subspace of \mathbb{R}^d , $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

Low-Rank Factorization

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^{\mathsf{T}}$.

Exercise: What is this coefficient matrix **C**? Hint: Use that $V^T V = I$.

$$\cdot X = CV^T \implies XV = CV^TV \implies XV = C$$

 $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

Projection View

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{C}\mathbf{V}^T\mathbf{X}\mathbf{V}\mathbf{V}^T.$

• WV^T is a projection matrix, which projects vectors onto the subspace V.

