COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 15

Logistics

- Midterm grades and solutions are posted on Moodle.
- We'll hand out the midterms at the end of class.
- The class average was $\approx 30 / 39=77 \%$.
$\sqrt{\text { See Piazza post for more details. If you aren't happy with }}$ your grade, I'm happy to chat about strategies moving forward.

Quiz Question

Summary

Last Few Classes: The Johnson-Lindenstrauss Lemma

- Reduce n data points in any dimension d to $O\left(\frac{\log n / \delta}{\epsilon^{2}}\right)$ dimensions and preserve (with probability $\geq 1-\delta$) all pairwise
$\begin{array}{r}\text { 2 } \begin{array}{r}\text { dis } \\ - \\ \text { co } \\ \text { ob }\end{array} \\ \hline\end{array}$
- Proved via the distributional JL-Lemma which shows that if $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ is a random matrix, $\boldsymbol{\Pi} \vec{y}_{2} \approx\|\vec{y}\|$ for any y with high probability.
- Proof of distributional JL via linearity of expectation, linearity of variance, stability of the Gaussian distribution, and an exponential concentration bound for Chi-Squared random variables.

Summary

Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA).

- Reduce d-dimensional data points to a smaller dimension m.
- Like JL, compression is linear - by applying a matrix.
- Chose this matrix carefully, taking into account structure of the dataset.
- Can give better compression than random projection (although not directly comparable).

Will be using a fair amount of linear algebra: orthogonal basis, column/row span, eigenvectors, etc.

Embedding with Assumptions

Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Embedding with Assumptions

$E \mathbb{R}^{C}$
Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in any k-dimensional subspace

Claim: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\underline{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_{i}, \vec{x}_{j} :

$$
k v^{\top} V^{\top}\left[x_{i}\right]_{d}^{\left[\left\|V^{\top} \vec{x}_{i}-V^{\top} \vec{x}_{j}\right\|_{2}=\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}\right.}
$$

Embedding with Assumptions

Claim: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_{i}, \vec{x}_{j} :

$$
\left\|\mathbf{V}^{\top} \vec{x}_{i}-\mathbf{V}^{\top} \vec{x}_{j}\right\|_{2}=\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}
$$

$\mathrm{V}^{\top} \in \mathbb{R}^{k \times d}$ is a linear embedding of $\vec{x}_{1}, \ldots, \vec{x}_{n}$ into k dimensions $|x|$ with no distortion.

Dot Product Transformation
x,
$y=x_{i}-x_{j}\left\|V^{\top} y\right\| \xi\left\|V^{1}\right\|\|y\|=\|y\|$
Claim: Let $\vec{v}_{1}, \ldots, v_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{x}_{i}, \vec{x}_{j} \in \mathcal{V}:(y, y\rangle$
$V^{\prime}=2 \sqrt{\| \|^{\top} x_{i} i v^{\top} x_{2}\left\|_{2} x_{i}-x_{i}\right\| \frac{\left\|V^{\top} \vec{x}_{i}-V^{\top} \vec{x}_{j}\right\|_{2}^{2}=\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} .}{k} d x^{k} \quad d x_{1}}=y^{\top} y$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\exists c_{i}, c_{j} \in \mathbb{R}^{k} \quad \text { set. } \quad x_{i}=\overline{V_{c}}=V_{1}^{k N 1} c_{i}(1)+V_{2} c_{i}(2) \\
\quad x_{j}=V_{(j} \\
=\left\|V_{\sim}^{\top} V_{c_{i}}-V^{\top} V_{c j}\right\|_{2}=\left\|c_{i}-c_{j}\right\|_{2}^{2}=\left\|x_{i}-x_{j}\right\|_{2}^{2}
\end{array}\right.
\end{aligned}
$$

Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Letting $\vec{V}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathrm{V}^{\top} \vec{x}_{i} \in \mathbb{R}^{k}$ is still a good embedding for $x_{i} \in \mathbb{R}^{d}$.

Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Letting $\vec{V}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathrm{V}^{\top} \vec{x}_{i} \in \mathbb{R}^{k}$ is still a good embedding for $x_{i} \in \mathbb{R}^{d}$. The key idea behind low-rank approximation and principal component analysis (PCA).

Embedding with Assumptions

Main Focus of Upcoming Classes: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Letting $\vec{V}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathrm{V}^{\top} \vec{x}_{i} \in \mathbb{R}^{k}$ is still a good embedding for $x_{i} \in \mathbb{R}^{d}$. The key idea behind low-rank approximation and principal component analysis (PCA).
\rightarrow How do we find \mathcal{V} and V ?
How good is the embedding?

Low-Rank Factorization
Claim: $\vec{x}_{1}, \ldots, \bar{x}_{n} \mathbb{R}^{\mathrm{C}}$ ie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Factorization

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- Letting $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V}, can write \vec{x}_{i} as:

$$
\underline{\vec{x}_{i}=\underline{V \vec{c}_{i}}=c_{i, 1} \cdot \vec{v}_{1}+c_{i, 2} \cdot \vec{v}_{2}+\ldots+c_{i, k} \cdot \vec{v}_{k} .}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathbb{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Factorization

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- Letting $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V}, can write \vec{x}_{i} as:

$$
\vec{x}_{i}=\mathrm{V} \vec{c}_{i}=c_{i, 1} \cdot \vec{v}_{1}+c_{i, 2} \cdot \vec{v}_{2}+\ldots+c_{i, k} \cdot \vec{v}_{k} .
$$

- So $\vec{v}_{1}, \ldots, \vec{v}_{k}$ span the rows of X and thus rank $(X) \leq k$.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathbb{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- Every data point \vec{x}_{i} (row of X) can be written as $\vec{x}_{i}=\mathrm{V} \vec{c}_{i}=c_{i, 1} \cdot \vec{v}_{1}+\ldots+c_{i, k} \cdot \vec{v}_{k}$.
$\vec{x}_{1}, \ldots, \vec{x}_{n}$: data points (in \mathbb{R}^{d}), \mathcal{V} : k-dimensional subspace of $\mathbb{R}^{d}, \vec{v}_{1}, \ldots, \vec{v}_{k} \in$ \mathbb{R}^{d} : orthogonal basis for $\mathcal{V} . \boldsymbol{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- Everydata point \vec{x}_{i} (row of \boldsymbol{X}) can be written as

$$
\vec{x}_{i}=V \vec{c}_{i}=c_{i, 1} \cdot \vec{v}_{1}+\ldots+c_{i, k} \cdot \vec{v}_{k} .
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n}$: data points (in \mathbb{R}^{d}), \mathcal{V} : k-dimensional subspace of $\mathbb{R}^{d}, \vec{v}_{1}, \ldots, \vec{v}_{k} \in$ \mathbb{R}^{d} : orthogonal basis for \mathcal{V}. $\mathbb{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- Every data point \vec{x}_{i} (row of \boldsymbol{X}) can be written as

$$
\vec{x}_{i}=\mathrm{V} \vec{c}_{i}=c_{i, 1} \cdot \vec{v}_{1}+\ldots+c_{i, k} \cdot \vec{v}_{k} .
$$

k parameters

- X can be represented by $(n+d) \cdot k$ parameters vs. $n \cdot d$.

$$
\underbrace{n \cdot k}_{C_{i}^{\prime}{ }^{\prime} s}{\underset{V}{d}}_{d \cdot k}^{N}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n}$: data points (in \mathbb{R}^{d}), \mathcal{V} : k-dimensional subspace of $\mathbb{R}^{d}, \vec{v}_{1}, \ldots, \vec{v}_{k} \in$ \mathbb{R}^{d} : orthogonal basis for $\mathcal{V} . \mathbb{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- Every data point \vec{x}_{i} (row of \boldsymbol{X}) can be written as

$$
\vec{x}_{i}=\mathrm{V} \vec{c}_{i}=c_{i, 1} \cdot \vec{v}_{1}+\ldots+c_{i, k} \cdot \vec{v}_{k} .
$$

k parameters

The rows of X are spanned by k vectors: the columns of $V \Longrightarrow$ the columns of X are spanned by k vectors: the columns of C.

```
\(\vec{x}_{1}, \ldots, \vec{x}_{n}\) : data points (in \(\mathbb{R}^{d}\) ), \(\mathcal{V}\) : \(k\)-dimensional subspace of \(\mathbb{R}^{d}, \vec{v}_{1}, \ldots, \vec{v}_{k} \in\) \(\mathbb{R}^{d}\) : orthogonal basis for \(\mathcal{V} . V \in \mathbb{R}^{d \times k}\) : matrix with columns \(\vec{v}_{1}, \ldots, \vec{v}_{k}\).
```


Low-Rank Factorization

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathrm{X}=\mathrm{CV}^{\top}$.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Factorization

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathrm{X}=\mathrm{CV}^{\top}$.

Exercise: What is this coefficient matrix C ? Hint: Use that $\mathrm{V}^{\top} \mathrm{V}=\mathrm{I}$.

$$
X=C V^{\top} \quad X V=C V^{\top} J^{+} \quad X V=C
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogohal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Factorization

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathrm{X}=\mathrm{CV}^{\top}$.

Exercise: What is this coefficient matrix \mathbf{C} ? Hint: Use that $\mathrm{V}^{\top} \mathbf{V}=\mathbf{I}$.

- $\underbrace{\mathrm{X}=\mathrm{CV}^{\top} \Longrightarrow \mathrm{XV}=\mathrm{CV}^{\top} \mathrm{V}}$
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Factorization

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathrm{X}=\mathrm{CV}^{\top}$.

Exercise: What is this coefficient matrix \mathbf{C} ? Hint: Use that $\mathrm{V}^{\top} \mathbf{V}=\mathbf{I}$.
$\cdot \mathrm{X}=\mathrm{CV}^{\top} \Longrightarrow \mathrm{XV}=\mathrm{CV}^{\top} / \mathrm{V}^{ \pm} \Longrightarrow \mathrm{XV}=\mathrm{C}$
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Factorization

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathrm{X}=\mathrm{CV}^{\top}$.

Exercise: What is this coefficient matrix C ? Hint: Use that $\mathrm{V}^{\top} \mathrm{V}=\mathrm{I}$.

- $\mathrm{X}=\mathrm{CV}^{\top} \Longrightarrow \mathrm{XV}=\mathrm{CV}^{\top} \mathrm{V} \Longrightarrow \mathrm{XV}=\mathrm{C}$
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Projection View

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathrm{X}=\mathrm{CV}^{\top}
$$

Projection View

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the daţảa matrix can be written as

$$
\mathrm{X}=\mathrm{XVV}^{\top} .
$$

$V^{\top} V=I$

Projection View

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathrm{X}=\mathrm{XVV}{ }^{\top} .
$$

- VV^{\top} is a projection matrix, which projects vectors onto the subspace \mathcal{V}.
 nal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Projection View

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\underline{\mathrm{X}=\mathrm{XVV}^{\top} .}
$$

- VV^{\top} is a projection matrix, which projects vectors onto the subspace \mathcal{V}.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Projection View

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathrm{X}=\mathrm{XVV}^{\top} .
$$

- VV^{\top} is a projection matrix, which projects vectors onto the subspace \mathcal{V}.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Projection View

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathrm{X}=\mathrm{XVV}{ }^{\top} .
$$

- VV^{\top} is a projection matrix, which projects vectors onto the subspace \mathcal{V}.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathbb{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
X \approx X V V^{\top}
$$

d-dimensional space

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Low-Rank Approximation

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
\mathrm{X} \approx \mathrm{XVV}^{\top}
$$

d-dimensional space

Note: $\mathbf{X V V}^{\top}$ has rank k. It is a low-rank approximation of \mathbf{X}.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogo-

