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- We will be grading the exams this upcoming week.

- We will release solutions shortly — we still have some students
taking make up exams.

- Feel free to ask about the questions in office hours.
- Problem Set 3 will be released next week.



Last Class Prior to Exam: The Johnson-Lindenstrauss Lemma
- Intro to dimensionality reduction.
- Intro to low-distortion embeddings and the JL Lemma.

+ Reduction of JL Lemma to the Distributional JL Lemma.

This Class:

- Proof the Distributional JL Lemma.
- Example application of JL to clustering.

Next Few Classes:

- Data-dependent dimensionality reduction via PCA. Formulation
as low-rank matrix approximation.

- This would be a good time to review your linear algebra — matrix
multiplication, dot products, subspaces, orthogonal projection,
etc. See schedule tab for resources. 3



Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.id. as N(0,1/m). If we set m = O ("’g(eﬂ) then for any
y € RY with probability > 1— 6

(1=l < IMYll2 < (1+ &) I¥l2-

Applying a random matrix I to any vector y preserves y's norm with
high probability.
- Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

- Will prove today from first principles.

dimension, e: embedding error, §: embedding failure prob.

N e R™*4: random projection matrix. d: original dimension. m: compressed ]
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Distributional JL = JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection M preserves the norm of any y. The main JL
Lemma says that I preserves distances between vectors.

Since M is linear these are the same thing.

P - ; ~ Lo
Proof: Given Xy, ..., X,, define (1) vectors y; where y; = X; — X;.
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- If we choose Nwithm=0 ('°g1/5 ) for each y; with probability >



Distributional JL Proof
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Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen i.i.d. as N(0,1/m). If we setm = O ("’%ﬂ) then for any
y € RY with probability > 1— 6

(1=l < IMYll2 < (1+ )lI¥ll2

- Lety denote I'Iy and let M(j) denote the j row of M.
* Foranyj, y(j) i) y) = Z, 18i - V(i) where g ~ N(0,1/m).
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¥ € RY arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection. d: original dim. m: compressed dim, e: error, §: failure prob.




Distributional JL Proof

- Lety denote My and let N(j) denote the j row of N.

- ForanyJ, y(j) j),9) = S8 - J(i) where g ~ A(0,1/m).
- g V(i) ~N(0, Y () ) normally distributed with variance y()
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variance variance ——— .
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—— | \ variance Y@
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gi gi-yQ@) ¥() =[g1 - y(1) + g2 y(2

What is the distribution of y(j)? Also Gaussian!

¥ € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — y. M(j): j row of N, d: original dimension. m: com- 7
pressed dimension, g;: normally distributed random variable.



Distributional JL Proof

Letting y = Ny, we have y(j) = (N(j), V) and:

d ()2
) = Zg; (i) where g - y(i) ~ N <O7 y(l)) .

- m
=1

Stability of Gaussian Random Variables. For independent a ~
N(m,0%) and b ~ N (2, 07) we have:

a+ b~ N(m + p2, 07 + 03)

/\+ /\ - J\
(i 2 v(d)* 1171 7 itself i
Thus, ¥(j) ~ N(0, y( I y( R 19 WLy e, § itself is a random
Gaussian vector. Rotat\onal invariance of the Gaussian distribution.

[ % E RY: arbitrary vector, y € R™: compressed vector, M € R™*9: random ] 8
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Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny

§() ~ N0, |712/m).
What is E[|§][2]?

E[[[§]5] = E Zy =ZE[9(J)2]

Soy has the right norm in expectation.

How is ||y||3 distributed? Does it concentrate?

¥ € RY: arbitrary vector, j € R™: compressed vector, M € R™*%: random
projection mapping y — y. M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable




Distributional JL Proof

So far: Letting M € RY*™ have each entry chosen i.i.d. as A'(0,1/m),
forany y € RY, letting y = Ny
y(j) ~ N(0, [[¥]3/m) and E[I§]15] = [I¥l3

19112 = >, ¥i(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)
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Lemma: (Chi-Squared Concentration) Letting Z be a Chi-

Squared random variable with m degrees of freedom, 0

Prll7 7| > 071 < Do—Me /8



Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.
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k-means Objective: Cost(Cy,...,Ck) = Zmin ZZHX 13-

J =1 XeCy
Write in terms of distances:

Cost(Cy, ..., Cq) = Zmin, Z > 1% =Xl

J 1 %,%€Ck 1



Example Application: k-means clustering

k-means Objective: Cost(Cy,...,Cy) = Zmin, Z > I% =Kl

J =1 X1,%€Cy

If we randomly projecttom =0 ( ) dimensions, for all pairs X3, X,

(1= lI% =%l < 1% — %[l < (1 + ¢)lIX = %[} =

Letting Cost(Cy, ..., Ck) = mln Z Z %1 — %2 |5

j 1 X1,%€Cx
(1 —€)Cost(Cy,...,Cx) < Cost(Cy,...,Ck) < (14 €)Cost(Cy, ..., Cp).

Upshot: Can cluster in m dimensional space (much more
efficiently) and minimize Cost(Cs, ..., Ck). The optimal set of clusters
will have true cost within 1+ ce times the true optimal. Good
exercise to prove this.
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