COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 14

Logistics

- We will be grading the exams this upcoming week.
- We will release solutions shortly - we still have some students taking make up exams.
- Feel free to ask about the questions in office hours.
- Problem Set 3 will be released next week.

Summary

Last Class Prior to Exam: The Johnson-Lindenstrauss Lemma

- Intro to dimensionality reduction.
- Intro to low-distortion embeddings and the JL Lemma.
- Reduction of JL Lemma to the Distributional JL Lemma.

This Class:

- Proof the Distributional JL Lemma.
- Example application of JL to clustering.

Next Few Classes:

- Data-dependent dimensionality reduction via PCA. Formulation as low-rank matrix approximation.
- This would be a good time to review your linear algebra - matrix multiplication, dot products, subspaces, orthogonal projection, etc. See schedule tab for resources.

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $\vec{y} \in \mathbb{R}^{d}$, with probability $\geq 1-\delta$

$$
(1-\epsilon)\|\vec{y}\|_{2} \leq\|\boldsymbol{\Pi} \vec{y}\|_{2} \leq(1+\epsilon)\|\vec{y}\|_{2} .
$$

Applying a random matrix $\boldsymbol{\Pi}$ to any vector \vec{y} preserves $\vec{y} s$ norm with high probability.

- Like a low-distortion embedding, but for the length of a compressed vector rather than distances between vectors.
- Will prove today from first principles.
$\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. d : original dimension. m : compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL \Longrightarrow JL

Distributional JL Lemma \Longrightarrow JL Lemma: Distributional JL show that a random projection $\boldsymbol{\Pi}$ preserves the norm of any y. The main JL Lemma says that $\boldsymbol{\Pi}$ preserves distances between vectors.

Since $\boldsymbol{\Pi}$ is linear these are the same thing. Proof: Given $\vec{x}_{1}, \ldots, \vec{x}_{n}$, define ($\binom{n}{2}$ vectors $\vec{y}_{i j}$ where $\vec{y}_{i j}=\vec{x}_{i}-\vec{x}_{j}$. vspace-1em

- If we choose $\boldsymbol{\Pi}$ with $m=O\left(\frac{\log 1 / \delta^{\prime}}{\epsilon^{2}}\right)$, for each $\vec{y}_{i j}$ with probability

Distributional JL Proof

Distributional JL Lemma: Let $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $\vec{y} \in \mathbb{R}^{d}$, with probability $\geq 1-\delta$

$$
(1-\epsilon)\|\vec{y}\|_{2} \leq\|\boldsymbol{\Pi} \vec{y}\|_{2} \leq(1+\epsilon)\|\vec{y}\|_{2}
$$

- Let \tilde{y} denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $j, \tilde{\mathbf{y}}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle=\sum_{\boldsymbol{\pi}}^{d} \boldsymbol{g}_{i} \cdot \vec{y}(i)$ where $\mathrm{g}_{i} \sim \mathcal{N}(0,1 / m)$.

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}$: compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection. d: original dim. m: compressed dim, ϵ : error, δ : failure prob.

Distributional JL Proof

- Let $\tilde{\boldsymbol{y}}$ denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $j, \tilde{\mathbf{y}}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle=\sum_{i=1}^{d} \mathrm{~g}_{i} \cdot \vec{y}(i)$ where $\mathrm{g}_{i} \sim \mathcal{N}(0,1 / m)$.
- $\mathrm{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$: normally distributed with variance $\frac{\vec{y}(i)^{2}}{m}$.

\boldsymbol{g}_{i}

$\boldsymbol{g}_{i} \cdot y(i)$

$\widetilde{\boldsymbol{y}}(j)=\left[\boldsymbol{g}_{1} \cdot y(1)+\boldsymbol{g}_{2} \cdot y(2\right.$

What is the distribution of $\tilde{y}(j)$? Also Gaussian!
$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}$: compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{\mathbf{y}} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m: com-
pressed dimension, $\mathrm{g}_{\text {: }}$ normally distributed random variable.

Distributional JL Proof

Letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$, we have $\tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle$ and:

$$
\tilde{y}(j)=\sum_{i=1}^{d} g_{i} \cdot \vec{y}(i) \text { where } \mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right) .
$$

Stability of Gaussian Random Variables. For independent $a \sim$ $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $b \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ we have:

$$
a+b \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

Thus, $\tilde{y}(j) \sim \mathcal{N}\left(0, \frac{\vec{y}(1)^{2}}{m}+\frac{\vec{y}(2)^{2}}{m}+\ldots+\frac{\vec{y}(d)^{2}}{m} \frac{\|\vec{y}\|_{2}^{2}}{m}\right)$ I.e., \tilde{y} itself is a random Gaussian vector. Rotational invariance of the Gaussian distribution.
$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}:$ random

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) .
$$

What is $\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right.$?

$$
\begin{aligned}
\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\mathbb{E}\left[\sum_{j=1}^{m} \tilde{y}(j)^{2}\right] & =\sum_{j=1}^{m} \mathbb{E}\left[\tilde{y}(j)^{2}\right] \\
& =\sum_{j=1}^{m} \frac{\|\vec{y}\|_{2}^{2}}{m}=\|\vec{y}\|_{2}^{2}
\end{aligned}
$$

So ỹ has the right norm in expectation.
How is $\|\tilde{y}\|_{2}^{2}$ distributed? Does it concentrate?
$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}:$ random
projection mapping $\vec{y} \rightarrow \tilde{\mathbf{y}} . \boldsymbol{\Pi}(j): j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m : com-
pressed dimension, $\mathrm{g}_{i}:$ normally distributed random variable

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) \text { and } \mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\|\vec{y}\|_{2}^{2}
$$

$\|\tilde{y}\|_{2}^{2}=\sum_{i=1}^{m} \tilde{y}(j)^{2}$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a ChiSquared random variable with m degrees of freedom,

$$
\operatorname{Pr}[|Z-\mathbb{E} Z|>\epsilon \mathbb{E} Z]<2 e^{-m \epsilon^{2} / 8}
$$

Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

Write in terms of distances:
$\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{k}}\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}$

Example Application: k-means clustering

k-means Objective: $\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{k}}\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}$ If we randomly project to $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensions, for all pairs \vec{x}_{1}, \vec{x}_{2},

$$
(1-\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2} \leq\left\|\tilde{\mathbf{x}}_{1}-\tilde{\mathbf{x}}_{2}\right\|_{2}^{2} \leq(1+\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2} \Longrightarrow
$$

$$
\text { Letting } \overline{\operatorname{cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\tilde{x}_{1}, \tilde{x}_{2} \in \mathcal{C}_{k}}\left\|\tilde{\mathrm{x}}_{1}-\tilde{\mathrm{x}}_{2}\right\|_{2}^{2}
$$

$$
(1-\epsilon) \operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right) \leq \overline{\operatorname{Cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right) \leq(1+\epsilon) \operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)
$$

Upshot: Can cluster in m dimensional space (much more efficiently) and minimize $\overline{\operatorname{Cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)$. The optimal set of clusters will have true cost within $1+C \epsilon$ times the true optimal. Good exercise to prove this.

