COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 14

Logistics

- We will be grading the exams this upcoming week.
- We will release solutions shortly - we still have some students taking make up exams.
- Feel free to ask about the questions in office hours.
- Problem Set 3 will be released next week.
- Quiz da monday.

Summary

Last Class Prior to Exam: The Johnson-Lindenstrauss Lemma

- Intro to dimensionality reduction.
- Intro to low-distortion embeddings and the UL Lemma.
- Reduction of JL Lemma to the Distributional JL Lemma.

Summary

Last Class Prior to Exam: The Johnson-Lindenstrauss Lemma

- Intro to dimensionality reduction.
- Intro to low-distortion embeddings and the JL Lemma.
- Reduction of JL Lemma to the Distributional JL Lemma.

This Class:

- Proof the Distributional JL Lemma.
- Example application of JL to clustering.

Summary

Last Class Prior to Exam: The Johnson-Lindenstrauss Lemma

- Intro to dimensionality reduction.
- Intro to low-distortion embeddings and the JL Lemma.
- Reduction of JL Lemma to the Distributional JL Lemma.

This Class:

- Proof the Distributional JL Lemma.
\square • Example application of JL to clustering.
Next Few Classes:
- Data-dependent dimensionality reduction via PCA. Formulation as low-rank matrix approximation.
This would be a good time to review your linear algebra - matrix multiplication, dot products, subspaces, orthogonal projection, etc. See schedule tab for resources.

Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma: $\quad[\pi]\left[\begin{array}{l}y \\ \hline\end{array}=[w]\right.$

Distributional JL Lemma: Let $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any
$\vec{y} \in \mathbb{R}^{d}$, with probability $\geq 1-\delta$

$$
(1-\epsilon)\|\vec{y}\|_{2} \leq\|\boldsymbol{\Pi} \vec{y}\|_{2} \leq(1+\epsilon)\|\vec{y}\|_{2} .
$$

Applying a random matrix $\boldsymbol{\Pi}$ to any vector \vec{y} preserves $\vec{y} \mathrm{~s}$ norm with high probability.

- Like alow-distortion embedding, but for the length of a compressed vector rather than distances between vectors.
- Will prove today from first principles.
$\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. d : original dimension. m: compressed dimension, ϵ : embedding error, $\delta:$ embedding failure prob.

Distributional JL \Longrightarrow JL

Distributional JL Lemma \Longrightarrow JL Lemma: Distributional JL show that a random projection $\boldsymbol{\Pi}$ preserves the norm of any y. The main JL Lemma says that $\boldsymbol{\Pi}$ preserves distances between vectors.

Since $\boldsymbol{\Pi}$ is linear these are the same thing.
Proof: Given $\vec{x}_{1}, \ldots, \vec{x}_{n}$, define $\left.\begin{array}{l}n \\ 2\end{array}\right)$ vectors $\vec{y}_{i j}$ where $\vec{y}_{i j}=\vec{x}_{i}-\vec{x}_{j}$. vspace-1em
$\left\|x_{i}-x_{j} \mid\right\|$

Distributional JL $\Longrightarrow \mathrm{JL}$

Distributional JL Lemma \Longrightarrow JL Lemma: Distributional JL show that a random projection $\boldsymbol{\Pi}$ preserves the norm of any y. The main JL Lemma says that $\boldsymbol{\Pi}$ preserves distances between vectors.

Since $\boldsymbol{\Pi}$ is linear these are the same thing.
Proof: Given $\vec{x}_{1}, \ldots, \vec{x}_{n}$, define ($\left.\begin{array}{c}n \\ 2\end{array}\right)$ vectors $\vec{y}_{i j}$ where $\vec{y}_{i j}=\vec{x}_{i}-\vec{x}_{j}$.

- If we choose $\boldsymbol{\Pi}$ with $m=0\left(\frac{\log 1 / \delta^{\prime}}{\epsilon^{2}}\right)$, for each $\vec{y}_{i j}$ with probability

$$
\geq \underline{1-\delta^{\prime} \text { we have: }} \underset{(1-\epsilon)\left\|\vec{y}_{i j}\right\|_{2} \leq\left\|\boldsymbol{\Pi} \overrightarrow{\boldsymbol{y}}_{i j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{y}_{i j}\right\|_{2}}{ }
$$

$\vec{x}_{1}, \ldots, \overrightarrow{\mathrm{x}}_{n}$: original points, $\tilde{\mathrm{x}}_{1}, \ldots, \tilde{\mathrm{x}}_{n}$: compressed points, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m : compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL $\Longrightarrow \mathrm{JL}$

Distributional JL Lemma \Longrightarrow JL Lemma: Distributional JL show that a random projection $\boldsymbol{\Pi}$ preserves the norm of any y. The main JL Lemma says that $\boldsymbol{\Pi}$ preserves distances between vectors.

Since $\boldsymbol{\Pi}$ is linear these are the same thing.
Proof: Given $\vec{x}_{1}, \ldots, \vec{x}_{n}$, define $\binom{n}{2}$ vectors $\vec{y}_{i j}$ where $\vec{y}_{i j}=\vec{x}_{i}-\vec{x}_{j}$.

- If we choose $\boldsymbol{\Pi}$ with $m=O\left(\frac{\log 1 / \delta^{\prime}}{\epsilon^{2}}\right)$, for each $\vec{y}_{i j}$ with probability
$\geq 1-\delta^{\prime}$ we have: $\quad \pi x_{i}-\pi_{x_{j}}, \hat{x}_{j}$

$$
(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq \| \underline{\boldsymbol{\Pi}\left(\vec{x}_{i}-\vec{x}_{j}\right)\left\|_{2} \leq(1+\epsilon)\right\| \vec{x}_{i}-\vec{x}_{j} \|_{2} .}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n}$: original points, $\tilde{\mathbf{x}}_{1}, \ldots, \tilde{x}_{n}$: compressed points, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL $\Longrightarrow \mathrm{JL}$

Distributional JL Lemma \Longrightarrow JL Lemma: Distributional JL show that a random projection $\boldsymbol{\Pi}$ preserves the norm of any y. The main JL Lemma says that $\boldsymbol{\Pi}$ preserves distances between vectors.

Since $\boldsymbol{\Pi}$ is linear these are the same thing.
Proof: Given $\vec{x}_{1}, \ldots, \vec{x}_{n}$, define $\binom{n}{2}$ vectors $\vec{y}_{i j}$ where $\vec{y}_{i j}=\vec{x}_{i}-\vec{x}_{j}$.

- If we choose $\boldsymbol{\Pi}$ with $m=O\left(\frac{\log 1 / \delta^{\prime}}{\epsilon^{2}}\right)$, for each $\vec{y}_{i j}$ with probability $\geq 1-\delta^{\prime}$ we have:

$$
(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\tilde{x}_{i}-\tilde{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n}$: original points, $\tilde{\mathbf{x}}_{1}, \ldots, \tilde{x}_{n}$: compressed points, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL $\Longrightarrow \mathrm{JL}$

Distributional JL Lemma \Longrightarrow JL Lemma: Distributional JL show that a random projection $\boldsymbol{\Pi}$ preserves the norm of any y. The main JL Lemma says that $\boldsymbol{\Pi}$ preserves distances between vectors.
Sincenis linear these are the same thing. $\operatorname{Pr}\left(\cup E_{i j}\right) \leqslant \sum_{i j} \operatorname{Pr}\left(E_{i j}\right)$ Proof: Given $\vec{x}_{1}, \ldots, \vec{x}_{n}$, define $\binom{n}{2}$ vectors $\vec{y}_{i j}$ where $\vec{y}_{i j}=\vec{x}_{i}-\vec{x}_{j} .=\binom{n}{2} \cdot f$
$\dot{\chi}_{x^{\prime}}$ If we choose $\boldsymbol{\Pi}$ with $m=O\left(\frac{\log 1 / \delta^{\prime}}{\epsilon^{2}}\right)$, for each $\vec{y}_{i j}$ with probability
Eli) fix

$$
\left(\log _{\frac{\epsilon^{2}}{}\left(n^{2} / d\right)}^{\tau^{2}}=O\left(\frac{\left.\log \frac{\ln / \delta)}{\varepsilon^{2}}\right)}{}\right.\right.
$$

Setting $\delta^{\prime}=\delta /\binom{n}{2}$, by a union bound, this holds simultaneously for
$\vec{x}_{1}, \ldots, \vec{x}_{n}$: original points, $\tilde{\mathrm{x}}_{1}, \ldots, \tilde{\mathrm{x}}_{n}$: compressed points, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL Proof

Distributional JL Lemma: Let $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $\vec{y} \in \mathbb{R}^{d}$, with probability $\geq 1-\delta$

$$
(1-\epsilon)\|\vec{y}\|_{2} \leq\|\boldsymbol{\Pi} \vec{y}\|_{2} \leq(1+\epsilon)\|\vec{y}\|_{2}
$$

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection. d: original dim. m : compressed $\operatorname{dim}, \epsilon$: error, δ : failure prob.

Distributional JL Proof

Distributional JL Lemma: Let $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ have each entry ohosen i.i.d. as $\mathcal{N}(0,1 / m)$. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $\vec{y} \in \mathbb{R}^{d}$, with probability $\geq 1-\delta$

$$
(1-\epsilon)\|\vec{y}\|_{2} \leq\|\boldsymbol{\Pi} \vec{y}\|_{2} \leq(1+\epsilon)\|\vec{y}\|_{2}
$$

- Let \tilde{y} denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection. d: original dim. m : compressed $\operatorname{dim}, \epsilon$: error, δ : failure prob.

Distributional JL Proof

Distributional JL Lemma: Let $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $\vec{y} \in \mathbb{R}^{d}$, with probability $\geq 1-\delta$

$$
(1-\epsilon)\|\vec{y}\|_{2} \leq\|\boldsymbol{\Pi} \vec{y}\|_{2} \leq(1+\epsilon)\|\vec{y}\|_{2}
$$

- Let \tilde{y} denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $j, \tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle$
$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection. d : original dim. m : compressed $\operatorname{dim}, \epsilon$: error, δ : failure prob.

Distributional JL Proof

Distributional JL Lemma: Let $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $\vec{y} \in \mathbb{R}^{d}$, with probability $\geq 1-\delta$

$$
(1-\epsilon)\|\vec{y}\|_{2} \leq\|\boldsymbol{\Pi} \vec{y}\|_{2} \leq(1+\epsilon)\|\vec{y}\|_{2}
$$

- Let \tilde{y} denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $j, \tilde{y}(j)=\langle\underline{\boldsymbol{\Pi}}(j), \vec{y}\rangle$

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection. d : original dim. m : compressed $\operatorname{dim}, \epsilon$: error, δ : failure prob.

Distributional JL Proof

Distributional JL Lemma: Let $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $\vec{y} \in \mathbb{R}^{d}$, with probability $\geq 1-\delta$

$$
(1-\epsilon)\|\vec{y}\|_{2} \leq\|\boldsymbol{\Pi} \overrightarrow{\boldsymbol{H}}\|_{2} \leq(1+\epsilon)\|\vec{y}\|_{2}
$$

- Let \tilde{y} denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $j, \underline{\tilde{y}(j)}=\frac{\langle\boldsymbol{\Pi}(j), \vec{y}\rangle}{\sum_{\boldsymbol{\pi}}^{d} \frac{\sum_{i=1}^{d} \boldsymbol{g}_{i} \cdot \vec{y}(i)}{y}}$ where $\boldsymbol{g}_{i} \sim \mathcal{N}(0,1 / m)$.

y_{d}
$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection. d: original dim. m : compressed $\operatorname{dim}, \epsilon$: error, δ : failure prob.

Distributional JL Proof

- Let \tilde{y} denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $\underline{j, \tilde{\mathbf{y}}(j)}=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle=\underline{\sum_{i=1}^{d} g_{i} \cdot \vec{y}(i)}$ where $\boldsymbol{g}_{i} \sim \mathcal{N}(0,1 / m)$.
$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{\mathbf{y}} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m : compressed dimension, $\mathrm{g}_{\text {: }}$: normally distributed random variable.

Distributional JL Proof

- Let \tilde{y} denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $j, \tilde{\mathbf{y}}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle=\sum_{i=1}^{d} \mathrm{~g}_{i} \cdot \vec{y}(i)$ where $\mathrm{g}_{i} \sim \mathcal{N}(0,1 / m)$.
- $\mathrm{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right):$ normally distributed with variance $\frac{\vec{y}(i)^{2}}{m}$.
$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{\mathbf{y}} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m : compressed dimension, g_{i} : normally distributed random variable.

Distributional JL Proof

- Let \tilde{y} denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $j, \tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle=\sum_{i=1}^{d} \mathrm{~g}_{i} \cdot \vec{y}(i)$ where $\mathrm{g}_{i} \sim \mathcal{N}(0,1 / m)$.
- $\mathrm{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right):$ normally distributed with variance $\frac{\vec{y}(i)^{2}}{m}$.

\boldsymbol{g}_{i}

$$
\boldsymbol{g}_{i} \cdot y(i)
$$

$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{\mathbf{y}} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m : compressed dimension, g_{i} : normally distributed random variable.

Distributional JL Proof

- Let \tilde{y} denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $j, \tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle=\sum_{i=1}^{d} \mathrm{~g}_{i} \cdot \vec{y}(i)$ where $\mathrm{g}_{i} \sim \mathcal{N}(0,1 / m)$.
- $\mathrm{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$: normally distributed with variance $\frac{\vec{y}(i)^{2}}{m}$.

$$
\widetilde{\boldsymbol{y}}(j)=\left[\boldsymbol{g}_{1} \cdot y(1)+\boldsymbol{g}_{2} \cdot y(2)+\ldots+\boldsymbol{g}_{n} \cdot y(d)\right]
$$

$$
\frac{y(1)}{\tilde{y}(j)} \sim N\left(0, \frac{y(1)^{2}}{m}+\frac{y(2)}{m}+\cdots \frac{y(1)}{m}\right)^{2}=N\left(0, \frac{\left\|_{1}\right\|_{2}^{2}}{m}\right)
$$

$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}$: compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{\mathbf{y}} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m : compressed dimension, $\mathrm{g}_{\text {: }}$: normally distributed random variable.

Distributional JL Proof

- Let $\tilde{\boldsymbol{y}}$ denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $j, \tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle=\sum_{i=1}^{d} \mathrm{~g}_{i} \cdot \vec{y}(i)$ where $\mathrm{g}_{i} \sim \mathcal{N}(0,1 / m)$.
- $\mathrm{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$: normally distributed with variance $\frac{\vec{y}(i)^{2}}{m}$.

What is the distribution of $\tilde{y}(j)$?
$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{\mathbf{y}} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m : compressed dimension, g_{g} : normally distributed random variable.

Distributional JL Proof

- Let $\tilde{\boldsymbol{y}}$ denote $\boldsymbol{\Pi} \vec{y}$ and let $\boldsymbol{\Pi}(j)$ denote the $j^{\text {th }}$ row of $\boldsymbol{\Pi}$.
- For any $j, \tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle=\sum_{i=1}^{d} \mathrm{~g}_{i} \cdot \vec{y}(i)$ where $\mathrm{g}_{i} \sim \mathcal{N}(0,1 / m)$.
- $\mathrm{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$: normally distributed with variance $\frac{\vec{y}(i)^{2}}{m}$.

What is the distribution of $\tilde{y}(j)$? Also Gaussian!
$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{\mathbf{y}} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m : compressed dimension, g_{g} : normally distributed random variable.

Distributional JL Proof

Letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$, we have $\tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle$ and:

$$
\tilde{y}(j)=\sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i) \text { where } \mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right) .
$$

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{\mathbf{y}} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d : original dimension. m : compressed dimension, \mathbf{g}_{j} : normally distributed random variable

Distributional JL Proof

Letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$, we have $\tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle$ and:

$$
\tilde{y}(j)=\sum_{i=1}^{d} g_{i} \cdot \vec{y}(i) \text { where } g_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)
$$

Stability of Gaussian Random Variables. For independent $a \sim$ $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $b \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ we have:

$$
a \underline{+b} \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{\mathrm{y}} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m: compressed dimension, g_{i} : normally distributed random variable

Distributional JL Proof

Letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$, we have $\tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle$ and:

$$
\tilde{y}(j)=\sum_{i=1}^{d} g_{i} \cdot \vec{y}(i) \text { where } g_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right) .
$$

Stability of Gaussian Random Variables. For independent $a \sim$ $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $b \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ we have:

$$
a+b \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{\mathrm{y}} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m: compressed dimension, g_{i} : normally distributed random variable

Distributional JL Proof

Letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$, we have $\tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle$ and:

$$
\tilde{y}(j)=\sum_{i=1}^{d} g_{i} \cdot \vec{y}(i) \text { where } g_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)
$$

Stability of Gaussian Random Variables. For independent $a \sim$ $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $b \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ we have:

$$
a+b \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

Thus, $\underbrace{\tilde{y}(j)} \sim \mathcal{N}\left(0, \frac{\vec{y}(1)^{2}}{m}+\frac{\vec{Y}(2)^{2}}{m}+\ldots+\frac{\vec{Y}(d)^{2}}{m}\right)$
$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m: compressed dimension, $\mathrm{g}_{\text {: }}$: normally distributed random variable

Distributional JL Proof

Letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$, we have $\tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle$ and:

$$
\tilde{y}(j)=\sum_{i=1}^{d} g_{i} \cdot \vec{y}(i) \text { where } g_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right) \cdot \quad \vec{y}=\frac{y}{\|y\|_{2}}
$$

Stability of Gaussian Random Variables. For independent $a \sim$ $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $b \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ we have:

$$
a+b \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

Thus, $\tilde{y}(j) \sim \mathcal{N}\left(0, \frac{\|\overrightarrow{\|}\|_{2}^{2}}{m}\right)$

$$
\left\{\left.\begin{array}{l}
\mid(1-\varepsilon)\|y\| \leq\|\pi y\|_{z} \leq(1+\varepsilon)\|y\| \\
(1-\varepsilon)\|\bar{y}\| \leq\|\pi \bar{y}\|
\end{array} \right\rvert\,\right.
$$

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y}$. $\boldsymbol{\Pi}(j)$: th row of $\boldsymbol{\Pi}$, d: original dimension. m: compressed dimension, $\mathrm{g}_{\text {: }}$ normally distributed random variable

Distributional JL Proof

Letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$, we have $\tilde{y}(j)=\langle\boldsymbol{\Pi}(j), \vec{y}\rangle$ and:
$\frac{\mathbb{y _ { j j }}}{\mathbb{\pi} x_{1}-\mathbb{\pi} x_{j}} \tilde{y}(j)=\sum_{i=1}^{d} g_{i} \cdot \vec{y}(i)$ where $g_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.
Stability of Gaussian Random Variables. For independent $a \sim$ $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $b \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ we have:

$$
a+b \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

Thus, $\tilde{y}(j) \sim \mathcal{N}\left(0, \frac{\|y\|_{2}^{2}}{m}\right)$ I.e., \tilde{y} itself is a random Gaussian vector. Rotational Invariance of the Gaussian distribution.
$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}$: compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{\mathbf{y}} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d : original dimension. m : compressed dimension, g_{i} : normally distributed random variable

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) .
$$

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y} . \boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}, d$: original dimension. m : compressed dimension, g_{i} : normally distributed random variable

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R} \mathbf{N O V}^{\text {have }}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(i)=\sum g_{i} y(i)
$$

$$
\underline{\underline{y}(j)} \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) .
$$

What is $\mathbb{E}\left[\|\tilde{y}\|_{2}\right]$? $=$

$$
=\sum_{j=1}^{\ln }\left\|y^{2}=\right\| y \|_{2}^{2}
$$

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}$: compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y}$. $\boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m: compressed dimension, g_{i} : normally distributed random variable

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) .
$$

What is $\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right.$?

$$
\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\mathbb{E}\left[\sum_{j=1}^{m} \tilde{y}(j)^{2}\right]
$$

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y} . \boldsymbol{\Pi}(j)$: jth row of $\boldsymbol{\Pi}, d$: original dimension. m : compressed dimension, g_{i} : normally distributed random variable

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) .
$$

What is $\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right.$?

$$
\mathbb{E}\left[\|\tilde{\mathrm{y}}\|_{2}^{2}\right]=\mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathrm{y}}(j)^{2}\right]=\sum_{j=1}^{m} \mathbb{E}\left[\tilde{\mathrm{y}}(j)^{2}\right]
$$

$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y}$. $\boldsymbol{\Pi}(j)$: jth row of $\boldsymbol{\Pi}$, d : original dimension. m : compressed dimension, $\mathrm{g}_{\text {: }}$ normally distributed random variable

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) .
$$

What is $\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right.$?

$$
\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right]=\sum_{j=1}^{m} \mathbb{E}\left[\tilde{\mathrm{y}}(j)^{2}\right]
$$

$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y}$. $\boldsymbol{\Pi}(j)$: jth row of $\boldsymbol{\Pi}$, d : original dimension. m : compressed dimension, $\mathrm{g}_{\text {: }}$ normally distributed random variable

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) .
$$

What is $\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]$?

$$
\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\mathbb{E}\left[\sum_{j=1}^{m} \tilde{y}(j)^{2}\right]=\sum_{j=1}^{m} \mathbb{E}\left[\tilde{y}(j)^{2}\right]
$$

$$
g_{i} \sim N\left(0, \frac{1}{\bar{n}}\right) \quad=\sum_{j=1}^{m} \frac{\|\vec{y}\|_{2}^{2}}{e^{m}}
$$

$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y}$. $\boldsymbol{\Pi}(j)$: th row of $\boldsymbol{\Pi}$, d : original dimension. m : compressed dimension, $\mathrm{g}_{\text {: }}$ normally distributed random variable

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) .
$$

What is $\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right.$?

$$
\begin{aligned}
\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\mathbb{E}\left[\sum_{j=1}^{m} \tilde{y}(j)^{2}\right] & =\sum_{j=1}^{m} \mathbb{E}\left[\tilde{y}(j)^{2}\right] \\
& =\sum_{j=1}^{m} \frac{\|\vec{y}\|_{2}^{2}}{m}=\|\vec{y}\|_{2}^{2}
\end{aligned}
$$

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}$: compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y} . \boldsymbol{\Pi}(j): j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m : compressed dimension, $\mathrm{g}_{\text {: }}$ normally distributed random variable

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) .
$$

What is $\underline{\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right] \text { ? }}$

$$
\begin{aligned}
\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\mathbb{E}\left[\sum_{j=1}^{m} \tilde{y}(j)^{2}\right] & =\sum_{j=1}^{m} \mathbb{E}\left[\tilde{y}(j)^{2}\right] \\
& =\sum_{j=1}^{m} \frac{\|\vec{y}\|_{2}^{2}}{m}=\|\vec{y}\|_{2}^{2}
\end{aligned}
$$

So ỹ has the right norm in expectation.
$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}$: compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y}$. $\boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d : original dimension. m : compressed dimension, g_{i} : normally distributed random variable

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) .
$$

What is $\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right.$?

$$
\begin{aligned}
\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\mathbb{E}\left[\sum_{j=1}^{m} \tilde{y}(j)^{2}\right] & =\sum_{j=1}^{m} \mathbb{E}\left[\tilde{y}(j)^{2}\right] \\
& =\sum_{j=1}^{m} \frac{\|\vec{y}\|_{2}^{2}}{m}=\|\vec{y}\|_{2}^{2}
\end{aligned}
$$

So y has the right norm in expectation.
How is $\|\tilde{y}\|_{2}^{2}$ distributed? Does it concentrate?
$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}$: compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y}$. $\boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m : compressed dimension, $\mathrm{g}_{\text {: }}$ normally distributed random variable

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) \text { and } \mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\|\vec{y}\|_{2}^{2}
$$

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{\mathbf{y}}$. $\boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m : compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
g^{a \operatorname{sjim}} \tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) \text { and } \mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\|\vec{y}\|_{2}^{2}
$$

$\|\tilde{y}\|_{2}^{2}=\sum_{i=1}^{m} \tilde{y}(j)^{2}$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)
$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}:$ compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y}$. $\boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m : compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) \text { and } \mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\|\vec{y}\|_{2}^{2}
$$

$\|\tilde{y}\|_{2}^{2}=\sum_{i=1}^{m} \tilde{y}(j)^{2}$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

$\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{y} \in \mathbb{R}^{m}$: compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y}$. $\boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d : original dimension. m : compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{y}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) \text { and } \mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\|\vec{y}\|_{2}^{2}
$$

$\|\tilde{y}\|_{2}^{2}=\sum_{i=1}^{m} \tilde{y}(j)^{2}$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a ChiSquared random variable with m degrees of freedom,

$$
\operatorname{Pr}[|Z-\mathbb{E} Z| \geq \epsilon \mathbb{E} Z] \leq \underline{2 e^{-m \epsilon^{2} / 8}} .
$$

$\vec{y} \in \mathbb{R}^{d}:$ arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}$: compressed vector, $\boldsymbol{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \tilde{y}$. $\boldsymbol{\Pi}(j)$: $j^{\text {th }}$ row of $\boldsymbol{\Pi}$, d: original dimension. m : compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{\mathrm{y}}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) \text { and } \mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\|\vec{y}\|_{2}^{2}
$$

$\|\tilde{y}\|_{2}^{2}=\sum_{i=1}^{m} \tilde{y}(j)^{2}$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussian) -ibericdy d that a

Lemma: (Chi-Squared Concentration) Letting Z be a ChiSquared random variab惿 with $m \|_{2}$ degrees of freedom,

Distributional JL Proof

So far: Letting $\boldsymbol{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$, for any $\vec{y} \in \mathbb{R}^{d}$, letting $\tilde{y}=\boldsymbol{\Pi} \vec{y}$:

$$
\tilde{\mathrm{y}}(j) \sim \mathcal{N}\left(0,\|\vec{y}\|_{2}^{2} / m\right) \text { and } \mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\|\vec{y}\|_{2}^{2}
$$

$\|\tilde{y}\|_{2}^{2}=\sum_{i=1}^{m} \tilde{y}(j)^{2}$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a ChiSquared random variable with m degrees of freedom,

$$
\operatorname{Pr}[|Z-\mathbb{E} Z| \geq \epsilon \mathbb{E} Z] \leq 2 e^{-m \epsilon^{2} / 8}
$$

If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, with probability $1-O\left(e^{-\log (1 / \delta)}\right) \geq 1-\delta$:

$$
(1-\epsilon)\|\vec{y}\|_{2}^{2} \leq\|\tilde{y}\|_{2}^{2} \leq(1+\epsilon)\|\vec{y}\|_{2}^{2} .
$$

Gives the distributiomma and thus the classic JL Lemma!

Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

k-means Objective: $\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\vec{x} \in \mathcal{C}_{k}}\left\|\vec{x}-\mu_{j}\right\|_{2}^{2}$.

Example Application: k-means clustering

Goal: Separate n points in d dimensional space into k groups.

k-means Objective: $\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\vec{x} \in \mathcal{C}_{k}}\left\|\vec{x}-\mu_{j}\right\|_{2}^{2}$.
Write in terms of distances:
$\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{k}}\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}$

Example Application: k-means clustering

k-means Objective: $\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{k}}\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}$

Example Application: k-means clustering

k-means Objective: $\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{k}}\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}$
If we randomly project to $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensions, for all pairs \vec{x}_{1}, \vec{x}_{2},

$$
(1-\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2} \leq\left\|\tilde{\mathbf{x}}_{1}-\tilde{\mathbf{x}}_{2}\right\|_{2}^{2} \leq(1+\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}
$$

Example Application: k-means clustering

k-means Objective: $\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{k}}\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}$
If we randomly project to $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensions, for all pairs \vec{x}_{1}, \vec{x}_{2},

$$
\left\{\begin{array}{c}
(1-\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2} \leq\left\|\tilde{x}_{1}-\tilde{x}_{2}\right\|_{2}^{2} \leq(1+\epsilon)\left\|\vec{x}_{1}-火_{2}\right\|_{2}^{2} \Longrightarrow \\
\text { Letting } \overline{\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)}=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\tilde{x}_{1}, \tilde{x}_{2} \in \mathcal{C}_{k}}\left\|\tilde{x}_{1}-\tilde{x}_{2}\right\|_{2}^{2} \\
(1-\epsilon) \operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right) \leq \overline{\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right) \leq(1+\epsilon) \operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right) .}
\end{array}\right.
$$

Example Application: k-means clustering

k-means Objective: $\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{k}}\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}$
If we randomly project to $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensions, for all pairs \vec{x}_{1}, \vec{x}_{2},

$$
\begin{aligned}
& \quad(1-\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2} \leq\left\|\tilde{x}_{1}-\tilde{x}_{2}\right\|_{2}^{2} \leq(1+\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2} \\
& \text { Letting } \overline{\operatorname{cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\min _{\mathcal{C}_{1}, \ldots \mathcal{C}_{k}} \sum_{j=1}^{k} \sum_{\tilde{x}_{1}, \tilde{x}_{2} \in \mathcal{C}_{k}}\left\|\tilde{x}_{1}-\tilde{x}_{2}\right\|_{2}^{2}
\end{aligned}
$$

$$
(1-\epsilon) \operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right) \leq \overline{\operatorname{Cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right) \leq(1+\epsilon) \operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)
$$

Upshot: Can cluster in dimensional space (much more efficiently) and minimiz $\overline{\operatorname{cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)$. The optimal set of clusters will have true cost within $1+C \epsilon$ times the true optimal. Good exercise to prove this.

