COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2023.

Lecture 14

- We will be grading the exams this upcoming week.
- We will release solutions shortly we still have some students taking make up exams.
- Feel free to ask about the questions in office hours.
- Problem Set 3 will be released next week.

Summary

Last Class Prior to Exam: The Johnson-Lindenstrauss Lemma

- Intro to dimensionality reduction.
- Intro to low-distortion embeddings and the JL Lemma.
- Reduction of JL Lemma to the Distributional JL Lemma.

 \sim

Summary

Last Class Prior to Exam: The Johnson-Lindenstrauss Lemma

- Intro to dimensionality reduction.
- Intro to low-distortion embeddings and the JL Lemma.
- Reduction of JL Lemma to the Distributional JL Lemma.

This Class:

- Proof the Distributional JL Lemma.
- Example application of JL to clustering.

Summary

Last Class Prior to Exam: The Johnson-Lindenstrauss Lemma

- Intro to dimensionality reduction.
- Intro to low-distortion embeddings and the JL Lemma.
- Reduction of JL Lemma to the Distributional JL Lemma.

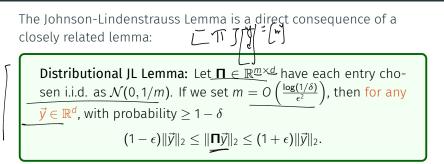
This Class:

- Proof the Distributional JL Lemma.
- Example application of JL to clustering.

Next Few Classes:

- Data-dependent dimensionality reduction via PCA. Formulation as low-rank matrix approximation.
- This would be a good time to review your linear algebra matrix multiplication, dot products, subspaces, orthogonal projection, etc. See schedule tab for resources.

Distributional JL



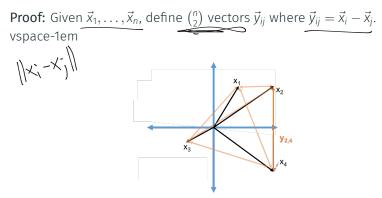
Applying a random matrix Π to any vector \vec{y} preserves \vec{y} 's norm with high probability.

- Like <u>a low-distortion</u> embedding, but for the length of a compressed vector rather than distances between vectors.
- Will prove today from first principles.

 $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection matrix. *d*: original dimension. *m*: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing.



Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing.

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

 $\vec{x}_1, \ldots, \vec{x}_n$: original points, $\tilde{\mathbf{x}}_1, \ldots, \tilde{\mathbf{x}}_n$: compressed points, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection matrix. *d*: original dimension. *m*: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing.

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

• If we choose $\mathbf{\Pi}$ with $m = O\left(\frac{\log 1/\delta'}{\epsilon^2}\right)$, for each \vec{y}_{ij} with probability $\geq 1 - \delta'$ we have: $(\mathbf{I} \times \mathbf{i} - \mathbf{I} \times \mathbf{j}) \times \mathbf{i} \times \mathbf{j}$ $(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2 \leq \|\mathbf{\Pi}(\vec{x}_i - \vec{x}_j)\|_2 \leq (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2$

 $\vec{x}_1, \ldots, \vec{x}_n$: original points, $\tilde{\mathbf{x}}_1, \ldots, \tilde{\mathbf{x}}_n$: compressed points, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors.

Since $\mathbf{\Pi}$ is linear these are the same thing.

Proof: Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.

• If we choose $\mathbf{\Pi}$ with $m = O\left(\frac{\log 1/\delta'}{\epsilon^2}\right)$, for each \vec{y}_{ij} with probability $\geq 1 - \delta'$ we have:

$$(1-\epsilon)\|\vec{x}_i-\vec{x}_j\|_2 \leq \|\tilde{\mathbf{x}}_i-\tilde{\mathbf{x}}_j\|_2 \leq (1+\epsilon)\|\vec{x}_i-\vec{x}_j\|_2$$

 $\vec{x}_1, \ldots, \vec{x}_n$: original points, $\tilde{\mathbf{x}}_1, \ldots, \tilde{\mathbf{x}}_n$: compressed points, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection matrix. *d*: original dimension. *m*: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL Lemma \implies **JL Lemma**: Distributional JL show that a random projection Π preserves the norm of any y. The main JL Lemma says that Π preserves distances between vectors. Since **<u>n</u>** is linear these are the same thing. $Pr(UE_{ij}) \stackrel{\scriptstyle <}{\leftarrow} \stackrel{\scriptstyle <}{\sum} Pr(E_{ij})$ **Proof:** Given $\vec{x}_1, \ldots, \vec{x}_n$, define $\binom{n}{2}$ vectors \vec{y}_{ij} where $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$. $\vec{z} = \binom{n}{2} \cdot \binom{1}{2} \cdot \binom{1}{2}$ Setting $\delta' = \delta/\binom{n}{2}$, by a union bound, this holds simultaneously for all \vec{x}_i, \vec{x}_j with probability at least $\sqrt{\delta}$ for $m = O(\frac{\log(n/\delta)}{\epsilon^2})$, giving the JL lemma. $\vec{x}_1, \ldots, \vec{x}_n$: original points, $\tilde{\mathbf{x}}_1, \ldots, \tilde{\mathbf{x}}_n$: compressed points, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random

 x_1, \ldots, x_n : original points, x_1, \ldots, x_n : compressed points, $\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. *d*: original dimension. *m*: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

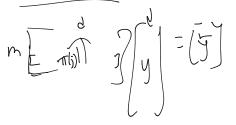
Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

 $(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$

Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$$

• Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi} \vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.



Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

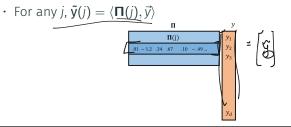
$$(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$$

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi} \vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any *j*, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$

Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$$

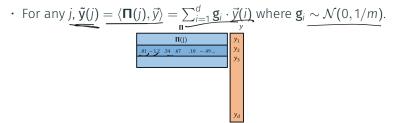
• Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi} \vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.



Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1-\epsilon)\|\vec{y}\|_2 \le \|\mathbf{\Pi}\vec{y}\|_2 \le (1+\epsilon)\|\vec{y}\|_2$$

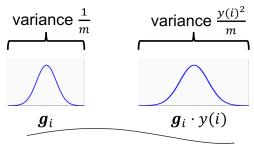
• Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi} \vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.



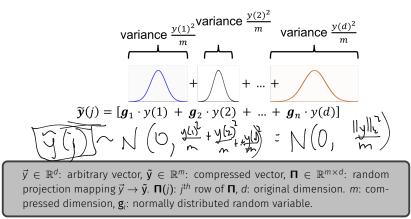
- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any $\underline{j}, \tilde{\mathbf{y}}(\underline{j}) = \langle \mathbf{\Pi}(\underline{j}), \overline{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \overline{y}(i)$ where $\mathbf{g}_{i} \sim \mathcal{N}(0, 1/m)$.

- Let $\tilde{\mathbf{y}}$ denote $\Pi \vec{\mathbf{y}}$ and let $\Pi(j)$ denote the j^{th} row of Π .
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \sim \mathcal{N}(0, 1/m)$. $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^{2}}{m})$: normally distributed with variance $\frac{\vec{y}(i)^{2}}{m}$.

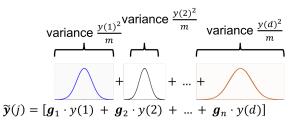
- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \underbrace{\frac{\vec{y}(i)^2}{m}}_{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.



- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^2}{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.

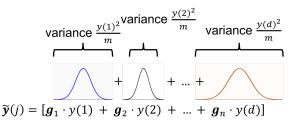


- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^2}{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.



What is the distribution of $\tilde{\mathbf{y}}(j)$?

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi}\vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.
- $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \frac{\vec{y}(i)^2}{m})$: normally distributed with variance $\frac{\vec{y}(i)^2}{m}$.



What is the distribution of $\tilde{\mathbf{y}}(j)$? Also Gaussian!

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{y} \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{y}$. $\Pi(j)$: *j*th row of Π , *d*: original dimension. *m*: compressed dimension, g_i : normally distributed random variable

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.

Stability of <u>G</u>aussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\widetilde{\mathbf{y}(j)} \sim \mathcal{N}(0, \frac{\overrightarrow{\mathbf{y}(1)^2}}{m} + \frac{\overrightarrow{\mathbf{y}(2)^2}}{m} + \ldots + \frac{\overrightarrow{\mathbf{y}(d)^2}}{m})$

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.
Stability of Gaussian Random Variables. For independent $a \sim \mathbf{V}$

 $\mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

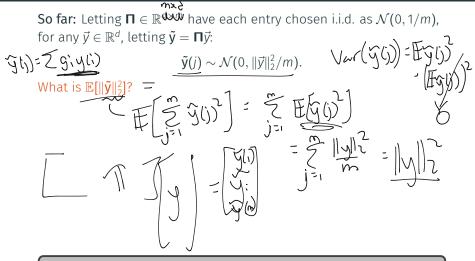
 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: *j*th row of $\mathbf{\Pi}$, *d*: original dimension. *m*: compressed dimension, \mathbf{g}_i : normally distributed random variable

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{\mathbf{y}}$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle$ and:
 $\vec{\mathbf{y}}(j) = \sum_{i=1}^{d} \mathbf{g}_{i} \cdot \vec{y}(i)$ where $\mathbf{g}_{i} \cdot \vec{y}(i) \sim \mathcal{N}\left(0, \frac{\vec{y}(i)^{2}}{m}\right)$.
Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_{1}, \sigma_{1}^{2})$ and $b \sim \mathcal{N}(\mu_{2}, \sigma_{2}^{2})$ we have:
 $a + b \sim \mathcal{N}(\mu_{1} + \mu_{2}, \sigma_{1}^{2} + \sigma_{2}^{2})$

Thus, $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \frac{\|\vec{\mathbf{y}}\|_2^2}{m})$ I.e., $\tilde{\mathbf{y}}$ itself is a random Gaussian vector. Rotational invariance of the Gaussian distribution.

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$



So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

What is $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right]$$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$

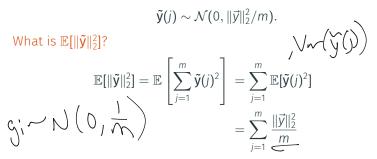
So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{\mathbf{y}}\|_2^2/m).$

What is $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right] = \sum_{j=1}^m \mathbb{E}[\tilde{\mathbf{y}}(j)^2]$$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:



So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

What is $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$
$$= \sum_{i=1}^{m} \frac{\|\vec{y}\|_{2}^{2}}{m} = \|\vec{y}\|_{2}^{2}$$

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\mathbf{\tilde{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \mathbf{\tilde{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\mathbf{\tilde{y}}(j)^{2}]$$
$$= \sum_{j=1}^{m} \frac{\|\mathbf{\vec{y}}\|_{2}^{2}}{m} = \frac{\|\mathbf{\vec{y}}\|_{2}^{2}}{m}$$

So $\tilde{\boldsymbol{y}}$ has the right norm in expectation.

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$

What is $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \mathbb{E}\left[\sum_{j=1}^m \tilde{\mathbf{y}}(j)^2\right] = \sum_{j=1}^m \mathbb{E}[\tilde{\mathbf{y}}(j)^2]$$
$$= \sum_{i=1}^m \frac{\|\vec{y}\|_2^2}{m} = \|\vec{y}\|_2^2$$

So $\tilde{\boldsymbol{y}}$ has the right norm in expectation.

How is $\|\mathbf{\tilde{y}}\|_2^2$ distributed? Does it concentrate?

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_j : normally distributed random variable

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $\mathbf{\tilde{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2] = \|\vec{y}\|_2^2$

 $\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

q

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{y}\|_2^2$

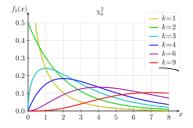
 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \dot{\tilde{\mathbf{y}}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{y} \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{y}$. $\Pi(j)$: j^{th} row of Π , d: original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $ilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|ec{\mathbf{y}}\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{ ilde{y}}\|_2^2] = \|ec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)



 $\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $ilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|ec{\mathbf{y}}\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{ ilde{y}}\|_2^2] = \|ec{\mathbf{y}}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting **Z** be a Chi-Squared random variable with *m* degrees of freedom,

$$\Pr\left[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}\right] \le 2e^{-m\epsilon^2/8}$$

 $\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \Pi \vec{y}$:

$$\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{\mathbf{y}}\|_2^2] = \|\vec{y}\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians) - i but is the first state of the second secon

Lemma: (Chi-Squared Concentration) Letting **Z** be a Chi-Squared random variable with *m* degrees of freedom, $|\nabla ||_{\mathcal{L}} = |\nabla ||_{\mathcal{L}} = \frac{|\nabla ||_{\mathcal{L}}}{|\nabla ||_{\mathcal{L}}}, \quad \mathcal{L} = \frac{|\nabla ||_{\mathcal{L}}}{|\nabla ||_$

If we set
$$m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$
, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$:
 $(1 - \epsilon) \|\vec{y}\|_2^2 \le \|\tilde{\mathbf{y}}\|_2^2 \le (1 + \epsilon) \|\vec{y}\|_2^2$.

 $\vec{y} \in \mathbb{R}^{d}$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^{m}$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} \vec{y}$:

 $ilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|ec{\mathbf{y}}\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{ ilde{y}}\|_2^2] = \|ec{\mathbf{y}}\|_2^2$

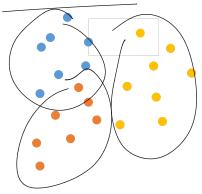
 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting **Z** be a Chi-Squared random variable with *m* degrees of freedom,

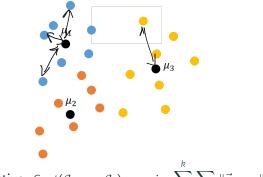
$$\Pr\left[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}\right] \le 2e^{-m\epsilon^2/8}$$

If we set
$$m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$
, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$:
 $(1 - \epsilon) \|\vec{y}\|_2^2 \le \|\tilde{\mathbf{y}}\|_2^2 \le (1 + \epsilon) \|\vec{y}\|_2^2$.
Gives the distributional JL Lemma and thus the classic JL Lemma!

Goal: Separate *n* points in *d* dimensional space into *k* groups.

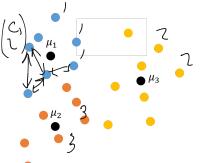


Goal: Separate *n* points in *d* dimensional space into *k* groups.



k-means Objective: $Cost(C_1, \ldots, C_k) = \min_{\substack{\mathcal{C}_1, \ldots, \mathcal{C}_k}} \sum_{j=1} \sum_{\vec{x} \in \mathcal{C}_k} \|\vec{x} - \mu_j\|_2^2.$

Goal: Separate n points in d dimensional space into k groups.



k-means Objective: $Cost(\mathcal{C}_1, \ldots, \mathcal{C}_k) = \min_{\mathcal{C}_1, \ldots, \mathcal{C}_k} \sum_{j=1}^{n} \sum_{\vec{x} \in \mathcal{C}_k} \|\vec{x} - \mu_j\|_2^2.$

Write in terms of distances: $Cost(C_1, \dots, C_k) = \min_{C_1, \dots, C_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in C_k} \|\vec{x}_1 - \vec{x}_2\|_2^2$

k-means Objective:
$$Cost(\mathcal{C}_1, \ldots, \mathcal{C}_k) = \min_{\mathcal{C}_1, \ldots, \mathcal{C}_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in \mathcal{C}_k} \|\vec{x}_1 - \vec{x}_2\|_2^2$$

k-means Objective:
$$Cost(\mathcal{C}_1, \ldots, \mathcal{C}_k) = \min_{\mathcal{C}_1, \ldots, \mathcal{C}_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in \mathcal{C}_k} \|\vec{x}_1 - \vec{x}_2\|_2^2$$

If we randomly project to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, for all pairs $\vec{x_1}, \vec{x_2}$,

$$(1-\epsilon)\|\vec{x}_1 - \vec{x}_2\|_2^2 \leq \|\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2\|_2^2 \leq (1+\epsilon)\|\vec{x}_1 - \vec{x}_2\|_2^2$$

k-means Objective:
$$Cost(\mathcal{C}_{1}, \dots, \mathcal{C}_{k}) = \min_{\substack{\mathcal{C}_{1},\dots,\mathcal{C}_{k} \\ j=1}} \sum_{\vec{x}_{1},\vec{x}_{2}\in\mathcal{C}_{k}} \|\vec{x}_{1} - \vec{x}_{2}\|_{2}^{2}}$$

If we randomly project to $m = O\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensions, for all pairs $\vec{x}_{1}, \vec{x}_{2},$
 $(1 - \epsilon)\|\vec{x}_{1} - \vec{x}_{2}\|_{2}^{2} \leq \|\tilde{\mathbf{x}}_{1} - \tilde{\mathbf{x}}_{2}\|_{2}^{2} \leq (1 + \epsilon)\|\vec{x}_{1} - \vec{x}_{2}\|_{2}^{2} \Longrightarrow$
Letting $\overline{Cost}(\mathcal{C}_{1},\dots,\mathcal{C}_{k}) = \min_{\substack{\mathcal{C}_{1},\dots,\mathcal{C}_{k}}} \sum_{j=1}^{k} \sum_{\vec{x}_{1},\vec{x}_{2}\in\mathcal{C}_{k}} \|\vec{\mathbf{x}}_{1} - \vec{\mathbf{x}}_{2}\|_{2}^{2}$
 $(1 - \epsilon)Cost(\mathcal{C}_{1},\dots,\mathcal{C}_{k}) \leq \overline{Cost}(\mathcal{C}_{1},\dots,\mathcal{C}_{k}) \leq (1 + \epsilon)Cost(\mathcal{C}_{1},\dots,\mathcal{C}_{k}).$

k-means Objective:
$$Cost(\mathcal{C}_1, \ldots, \mathcal{C}_k) = \min_{\mathcal{C}_1, \ldots, \mathcal{C}_k} \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in \mathcal{C}_k} \|\vec{x}_1 - \vec{x}_2\|_2^2$$

If we randomly project to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, for all pairs \vec{x}_1, \vec{x}_2 ,

$$(1-\epsilon)\|\vec{x}_1-\vec{x}_2\|_2^2 \leq \|\tilde{\mathbf{x}}_1-\tilde{\mathbf{x}}_2\|_2^2 \leq (1+\epsilon)\|\vec{x}_1-\vec{x}_2\|_2^2 \Longrightarrow$$

Letting $\overline{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k) = \min_{\mathcal{C}_1,\ldots,\mathcal{C}_k} \sum_{j=1}^k \sum_{\tilde{\mathbf{x}}_1,\tilde{\mathbf{x}}_2\in\mathcal{C}_k} \|\tilde{\mathbf{x}}_1-\tilde{\mathbf{x}}_2\|_2^2$

 $(1-\epsilon)$ Cost $(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq \overline{\text{Cost}}(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq (1+\epsilon)$ Cost $(\mathcal{C}_1,\ldots,\mathcal{C}_k)$.

Upshot: Can cluster in <u>m dimensional</u> space (much more efficiently) and minimize $\overline{Cost}(C_1, \ldots, C_k)$. The optimal set of clusters will have true cost within $1 + c\epsilon$ times the true optimal. Good exercise to prove this.