COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2023.
Lecture 13 (Midterm Review)



Last Class:

- Introduced the idea of low-distortion embeddings and the

JLlemma.  )\y- ‘b\\‘l— \\ﬂ\\
- Reduction of JL Lemma to the Distributional JL Lemma via
union bound.
- We will finish the proof of the JL Lemma after the midterm.
&nore any practice questions on this topic.
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This Class:

-« Midterm review.



Midterm Format
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- Question 1: 4-5 always, sometimes, nevers or ¢

~~— | Question 2: 3-4 short answers, sort of like quiz questions.
%0 estion 3-4: Multipart questions, similar to core
competency problems.

[ @stion 5: Extra credit question. Similar to a harder core

competency problem.
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Questions

Content, Format, or Logistics Questions?
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Random Hash Functions
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Concentration Bounds
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Example Pro

3. Consider an algorithm A running in time 7'(A), that with probability .6 outputs an estimate
of the number of triangles in an input graph up to error +100, and with probability .4 outputs
some bad estimate with worse error. Describe an algorithm that outputs an estimate of the
number of triangles in an input graph up to error +100 with probability > .99 and runs in
time O(T'(A)).

The Chernoff bound states that for independent random variables X, ..., Xn
taking values in {0,1}, letting p = E [>_7_, X;], for any § > 0,

Pr(}ZfLWXJf/J‘ >(5/1,) < 2exp (7;#) 8
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Example Problems

2. Assume there are 1000 registered users on your site u1, ..., %1000, and in a given day, each user
visits the site with some probability p;. The event that any user visits the site is independent
of what the other users do. Assume that }g‘{o pi = 500.

(a) Let X be the number of users that visit the site on the given day. What is E[X].
(b) Apply a Chernoff bound to show that Pr[X > 600] < .01.

(c) Apply Markov’s inequality and Chebyshev’s inequality to bound the same probability.
How do they compare?

The Chernoff bound states that for independent random variables X, ..., Xp
taking values in {0,1}, letting u = E [>_7_, X;], for any § > 0,

Pr (}ZVA x; — /1‘ > (5//) < Zexp (7;;/’;) ) )




Example Problems

2. Assume there are 1000 registered users on your site u1,

.., 1000, and in a given day, each user
visits the site with some probability p;. The event that any user visits the site is independent

of what the other users do. Assumé that Zlogop = 500.

(a) Let X be the number of users that visit the site on the given day. What is E[X]
b) Apply a Chernoff bound to show that Pr[X > 600] < .QL.
(b) Apply I une W k_ | < &\ )/ 5

ow do they compare?
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The Chernoff bound states that for independent random var
taking values in {0,1}, letting u = E [>_7_, X;], for any § > 0,
|0 X — u| > o) < 2exp (—24)

(c) Apply Markov’s inequality and Chebyshev’s inequality to bound the same probability.
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Example Problems
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