COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2023. Lecture 13 (Midterm Review)

Summary

Last Class:

- Introduced the idea of low-distortion embeddings and the JL Lemma. ハメータルユ ルメリン
 Reduction of JL Lemma to the Distributional JL Lemma via
- Reduction of JL Lemma to the Distributional JL Lemma via union bound.
- We will finish the proof of the JL Lemma after the midterm. Ignore any practice questions on this topic.

This Class:

· Midterm review.

Midterm Format

Rough Outline: (subject to small changes)

Question 1: 4-5 always, sometimes, nevers or true falses.

Question 2: 3-4 short answers, sort of like quiz questions.

Question 3-4: Multipart questions, similar to core competency problems.

Question 5: Extra credit question. Similar to a harder core competency problem.

3<u>1</u> 3v

Questions

Content, Format, or Logistics Questions?

- Borser

Never Str 18

Now Str 18

Var (x) =
$$Ex^2 - (Ex)^2$$

Now Str 18

Var (x) = $Ex^2 - (Ex)^2$
 $= Ex^2 - (Ex)^2$
 $= Ex$

Questions

Random Hash Functions

h(x), h(y), h(z),

as ishered

Pr(h(x)=h1

(x) = 1 AND hly)=1

Concentration Bounds

3. Consider an algorithm \mathcal{A} running in time $T(\mathcal{A})$, that with probability .6 outputs an estimate of the number of triangles in an input graph up to error ± 100 , and with probability .4 outputs some bad estimate with worse error. Describe an algorithm that outputs an estimate of the number of triangles in an input graph up to error ± 100 with probability $\geq .99$ and runs in time $O(T(\mathcal{A}))$.

The Chernoff bound states that for independent random variables X_1,\ldots,X_n taking values in $\{0,1\}$, letting $\mu=\mathbb{E}\left[\sum_{i=1}^n X_i\right]$, for any $\delta>0$, $\Pr\left(\left|\sum_{i=1}^n X_i-\mu\right|>\delta\mu\right)\leq 2\exp\left(-\frac{\delta^2\mu}{2+\delta}\right)$.

3. Consider an algorithm \mathcal{A} running in time $T(\mathcal{A})$, that with probability .6 outputs an estimate of the number of triangles in an input graph up to error ± 100 , and with probability .4 outputs some bad estimate with worse error. Describe an algorithm that outputs an estimate of the number of triangles in an input graph up to error ± 100 with probability $\geq .99$ and runs in time $O(T(\mathcal{A}))$.

The Chernoff bound states that for independent random variables X_1,\ldots,X_n taking values in $\{0,1\}$, letting $\mu=\mathbb{E}\left[\sum_{i=1}^n X_i\right]$, for any $\delta>0$, $\Pr\left(\left|\sum_{i=1}^n X_i-\mu\right|>\delta\mu\right)\leq 2\exp\left(-\frac{\delta^2\mu}{2+\delta}\right)$.

,, v v ± ±, ,, ,, v

- 2. Assume there are 1000 registered users on your site u_1, \ldots, u_{1000} , and in a given day, each user visits the site with some probability p_i . The event that any user visits the site is independent of what the other users do. Assume that $\sum_{i=0}^{1000} p_i = 500$.
 - (a) Let X be the number of users that visit the site on the given day. What is $\mathbb{E}[X]$.
 - (b) Apply a Chernoff bound to show that $Pr[X \ge 600] \le .01$.
 - (c) Apply Markov's inequality and Chebyshev's inequality to bound the same probability. How do they compare?

The Chernoff bound states that for independent random variables X_1,\ldots,X_n taking values in $\{0,1\}$, letting $\mu=\mathbb{E}\left[\sum_{i=1}^n X_i\right]$, for any $\delta>0$, $\Pr\left(\left|\sum_{i=1}^n X_i-\mu\right|>\delta\mu\right)\leq 2\exp\left(-\frac{\delta^2\mu}{2+\delta}\right)$.

- 2. Assume there are 1000 registered users on your site u_1, \ldots, u_{1000} , and in a given day, each user visits the site with some probability p_i . The event that any user visits the site is independent of what the other users do. Assume that $\sum_{i=1}^{1000} p_i = 500$.
 - (a) Let X be the number of users that visit the site on the given day. What is $\mathbb{E}[X]$.
 - (b) Apply a Chernoff bound to show that $Pr[X \ge 600] \le .01$.
 - (c) Apply Markov's inequality and Chebyshev's inequality to bound the same probability. How do they compare?

The Chernoff bound states that for independent random variables X_1, \ldots, X_n taking values in $\{0,1\}$, letting $\mu = \mathbb{E}\left[\sum_{i=1}^n X_i\right]$, for any $\delta > 0$, $\Pr\left(\left|\sum_{i=1}^{n} X_i - \mu\right| > \delta \mu\right) \le 2 \exp\left(-\frac{\delta^2 \mu}{2+\delta}\right).$

Example Problems
ALWAYS, SOMETIMES, OR NEVER: (1-5) = 1-6n + 3+3.
2. $\Pr[\max(X_1, \dots X_n) \geq t] \leq \sum_{i=1}^n \Pr[X_i \geq t]$ for any random variables X_1, \dots, X_n .
1 1
Pr(X,3+ or X23+ or. Xx3+) < Spr(X,3+)
Lived row
He with answer much is with problems (c) $\Pr[\mathbf{X} = s \cap \mathbf{Y} = t] = \Pr[\mathbf{X} = s] \cdot \Pr[\mathbf{Y} = t]$.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
N CRET

Pr (all greshors areat) 3 1- nd 1-Pr(fills at lexit ona)

which bond < n. 8 = & Pr(fills preshri)