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Logistics

• The midterm exam is next Tuesday in class.
• This Thursday we will do exam review in class.
• I will also hold extra office hours Thursday 11am-12:45pm in
LGRC A112.

• No quiz this week.
• If you need extended time on the exam, email me by
Wednesday to let me know.
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Summary

Last Class: Frequent Elements and Count-Min Sketch

• The frequent elements problem in data streams.

• Count-min sketch for frequency estimation via random hashing.

• Full analysis via Markov’s inequality and repetition.

This Class: Randomized Compression of High Dimensional Data

• Low-distortion embeddings and the Johnson-Lindenstraus (JL)
Lemma.

• Proof the JL Lemma.

• Example application to clustering.
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High Dimensional Data

‘Big Data’ means not just many data points, but many measurements
per data point. I.e., very high dimensional data.

• Twitter has 321 million active monthly users. Records (tens of)
thousands of measurements per user: who they follow, who
follows them, when they last visited the site, timestamps for
specific interactions, how many tweets they have sent, the text
of those tweets, etc.

• A 3 minute Youtube clip with a resolution of 500× 500 pixels at
15 frames/second with 3 color channels is a recording of ≥ 2
billion pixel values. Even a 500× 500 pixel color image has
750, 000 pixel values.

• The human genome contains 3 billion+ base pairs. Genetic
datasets often contain information on 100s of thousands+
mutations and genetic markers.

4



High Dimensional Data

‘Big Data’ means not just many data points, but many measurements
per data point. I.e., very high dimensional data.

• Twitter has 321 million active monthly users. Records (tens of)
thousands of measurements per user: who they follow, who
follows them, when they last visited the site, timestamps for
specific interactions, how many tweets they have sent, the text
of those tweets, etc.

• A 3 minute Youtube clip with a resolution of 500× 500 pixels at
15 frames/second with 3 color channels is a recording of ≥ 2
billion pixel values. Even a 500× 500 pixel color image has
750, 000 pixel values.

• The human genome contains 3 billion+ base pairs. Genetic
datasets often contain information on 100s of thousands+
mutations and genetic markers.

4



High Dimensional Data

‘Big Data’ means not just many data points, but many measurements
per data point. I.e., very high dimensional data.

• Twitter has 321 million active monthly users. Records (tens of)
thousands of measurements per user: who they follow, who
follows them, when they last visited the site, timestamps for
specific interactions, how many tweets they have sent, the text
of those tweets, etc.

• A 3 minute Youtube clip with a resolution of 500× 500 pixels at
15 frames/second with 3 color channels is a recording of ≥ 2
billion pixel values. Even a 500× 500 pixel color image has
750, 000 pixel values.

• The human genome contains 3 billion+ base pairs. Genetic
datasets often contain information on 100s of thousands+
mutations and genetic markers.

4

=



High Dimensional Data

‘Big Data’ means not just many data points, but many measurements
per data point. I.e., very high dimensional data.

• Twitter has 321 million active monthly users. Records (tens of)
thousands of measurements per user: who they follow, who
follows them, when they last visited the site, timestamps for
specific interactions, how many tweets they have sent, the text
of those tweets, etc.

• A 3 minute Youtube clip with a resolution of 500× 500 pixels at
15 frames/second with 3 color channels is a recording of ≥ 2
billion pixel values. Even a 500× 500 pixel color image has
750, 000 pixel values.

• The human genome contains 3 billion+ base pairs. Genetic
datasets often contain information on 100s of thousands+
mutations and genetic markers.

4

[



Data as Vectors and Matrices

In data analysis and machine learning, data points with many
attributes are often stored, processed, and interpreted as high
dimensional vectors, with real valued entries.

Similarities/distances between vectors
(e.g., 〈x, y〉, ‖x− y‖2) have meaning for
underlying data points.
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Datasets as Vectors and Matrices

Data points are interpreted as high dimensional vectors, with real
valued entries. Data set is interpreted as a matrix.

Data Points: !x1,!x2, . . . ,!xn ∈ Rd.

Data Set: X ∈ Rn×d with ith row equal to !xi.

Many data points n =⇒ tall. Many dimensions d =⇒ wide.
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Dimensionality Reduction

Dimensionality Reduction: Compress data points so that they lie in
many fewer dimensions.

!x1, . . . ,!xn ∈ Rd → x̃1, . . . , x̃n ∈ Rm for m * d.

‘Lossy compression’ that still preserves important information about
the relationships between !x1, . . . ,!xn.

Generally will not consider directly how well x̃i approximates !xi.
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Dimensionality Reduction

Dimensionality reduction is one of the most important techniques in
data science. What methods have you heard of?

• Principal component analysis

• Latent semantic analysis (LSA)

• Linear discriminant analysis

• Autoencoders

Compressing data makes it more efficient to work with. May also
remove extraneous information/noise.

8

- autoencodes
- SUD,PLA,GI-spectral algorithms X[ - - LDA

- DNA, JPEG,m i d%¥
%¥ E m a

- n e r d n e t ,
wallvec, rode

embeddi
ng



Dimensionality Reduction

Dimensionality reduction is one of the most important techniques in
data science. What methods have you heard of?

• Principal component analysis

• Latent semantic analysis (LSA)

• Linear discriminant analysis

• Autoencoders

Compressing data makes it more efficient to work with. May also
remove extraneous information/noise.

8

IDA)



Dimensionality Reduction

Dimensionality reduction is one of the most important techniques in
data science. What methods have you heard of?

• Principal component analysis

• Latent semantic analysis (LSA)

• Linear discriminant analysis

• Autoencoders

Compressing data makes it more efficient to work with. May also
remove extraneous information/noise. 8

!



Embeddings for Euclidean Space

Euclidean Low Distortion Embedding: Given !x1, . . . ,!xn ∈ Rd and error
parameter ε ≥ 0, find x̃1, . . . , x̃n ∈ Rm (where m * d) such that for all
i, j ∈ [n]:

(1− ε)‖!xi −!xj‖2 ≤ ‖x̃i − x̃j‖2 ≤ (1+ ε)‖!xi −!xj‖2.

Recall that for !z ∈ Rn, ‖!z‖2 =
√∑n

i=1!z(i)2.

Can use x̃1, . . . , x̃n in place of !x1, . . . ,!xn in clustering, SVM, linear
classification, near neighbor search, etc.
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The Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma tells us that for any set of
points !x1, . . . ,!xn ∈ Rd and any ε > 0, we can find an
ε-distortion embedding into m dimensions, where m depends
only on the error parameter ε and the number of points n, but
not the original dimension d.

10

C T

¥



The Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma: For any set of points
!x1, . . . ,!xn ∈ Rd and ε > 0 there exists a linear mapΠ : Rd → Rm

such that m = O
(

log n
ε2

)
and letting x̃i = Π!xi:

For all i, j : (1− ε)‖!xi −!xj‖2 ≤ ‖x̃i − x̃j‖2 ≤ (1+ ε)‖!xi −!xj‖2.

Further, if Π ∈ Rm×d has each entry chosen i.i.d. from
N (0, 1/m), it satisfies the guarantee with high probability.

For d = 1 trillion, ε = .05, and n = 100, 000, m ≈ 6600.

Very surprising! Powerful result with a simple construction: applying
a random linear transformation to a set of points preserves
distances between all those points with high probability.
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Random Projection

For any !x1, . . . ,!xn and Π ∈ Rm×d with each entry chosen i.i.d. from
N (0, 1/m), with high probability, letting x̃i = Π!xi:

For all i, j : (1− ε)‖!xi −!xj‖2 ≤ ‖x̃i − x̃j‖2 ≤ (1+ ε)‖!xi −!xj‖2.

• Π is known as a random projection. It is a random linear
function, mapping length d vectors to length m vectors.

• Π is data oblivious. Stark contrast to methods like PCA.
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Algorithmic Considerations

• Many alternative constructions: ±1 entries, sparse (most
entries 0), Fourier structured, etc. =⇒ more efficient
computation of x̃i = Π!xi.

• Data oblivious property means that once Π is chosen,
x̃1, . . . , x̃n can be computed in a stream with little memory.

• Memory needed is just O(d+ nm) vs. O(nd) to store the
full data set.

• Compression can also be easily performed in parallel on
different servers.

• When new data points are added, can be easily
compressed, without updating existing points.
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Distributional JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as N (0, 1/m). If we set m = O

(
log(1/δ)

ε2

)
, then for any

!y ∈ Rd, with probability ≥ 1− δ

(1− ε)‖!y‖2 ≤ ‖Π!y‖2 ≤ (1+ ε)‖!y‖2

Applying a random matrix Π to any vector !y preserves !y’s norm with
high probability.

• Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

• Can be proven from first principles.

Π ∈ Rm×d : random projection matrix. d: original dimension. m: compressed
dimension, ε: embedding error, δ: embedding failure prob. 14
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Distributional JL =⇒ JL

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given !x1, . . . ,!xn, define
(n
2
)
vectors !yij where !yij = !xi −!xj.

#x1, . . . ,#xn : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension, ε: em-
bedding error, δ: embedding failure prob. 15
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Distributional JL =⇒ JL

Claim: If we choose Π with i.i.d. N (0, 1/m) entries and
m = O

(
log(1/δ′)

ε2

)
, letting x̃i = Π!xi, for each pair !xi,!xj with probability

≥ 1− δ′ we have:

(1− ε)‖!xi −!xj‖2 ≤ ‖x̃i − xj̃‖2 ≤ (1+ ε)‖!xi −!xj‖2.

With what probability are all pairwise distances preserved?

Union bound: With probability ≥ 1−
(n
2
)
· δ′ all pairwise distances are

preserved.

Apply the claim with δ′ = δ/
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Yields the JL lemma.
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