
COMPSCI 514: Algorithms for Data Science

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 11

1

Logistics

• Problem Set 2 is due on Monday at 11:59pm.

• Midterm is in class Tuesday, 10/24. Thursday 10/19 will be
devoted to midterm review.

• The grading on this week’s quiz regarding the extra credit
question had a bug. We will fix manually in the next few days.

2

Summary

Last Class:

• Locality sensitive hashing to solve the similarity search problem
efficiently.

• MinHash as a locality sensitive hash function for Jaccard
similarity.

• Brief look at SimHash as a locality sensitive hash function for
cosine (dot product) similarity.

This Class:

• Introduce the frequent elements problem and its applications.

• Solution via the Count-Min sketch randomized data structure.

3

The Frequent Items Problems

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x1, . . . , xn (with possible duplicates). Return any item
at appears at least n

k times.

• What is the maximum number of items that can be
returned? a) n b) k c) n/k d) log n

• Trivial with O(n) space – store the count for each item and
return the one that appears ≥ n/k times.

• Can we do it with less space? I.e., without storing all n
items?

4

The Frequent Items Problem

Applications of Frequent Items:

• Finding top/viral items (i.e., products on Amazon, videos
watched on Youtube, Google searches, etc.)

• Finding very frequent IP addresses sending requests (to
detect DoS attacks/network anomalies).

• ‘Iceberg queries’ for all items in a database with frequency
above some threshold.

Generally want very fast detection, without having to scan
through database/logs. I.e., want to maintain a running list of
frequent items that appear in a stream.

5

Frequent Itemset Mining

Association rule learning: A very common task in data mining is to
identify common associations between different events.

• Identified via frequent itemset counting. Find all sets of t items
that appear many times in the same basket.

• Frequency of an itemset is known as its support.

• A single basket includes many different itemsets, and with many
different baskets an efficient approach is critical. E.g., baskets
are Twitter users and itemsets are subsets of who they follow.

6

Approximate Frequent Elements

Issue: No algorithm using o(n) space can output just the items with
frequency ≥ n/k. Hard to tell between an item with frequency n/k
(should be output) and n/k− 1 (should not be output).

(ϵ, k)-Frequent Items Problem: Consider a stream of n items
x1, . . . , xn. Return a set F of items, including all items that appear at
least n

k times and only items that appear at least (1− ϵ) · n
k times.

• An example of relaxing to a ‘promise problem’: for items with
frequencies in [(1− ϵ) · n

k ,
n
k] no output guarantee.

7

Frequent Elements with Count-Min Sketch

Today: Count-min sketch – a random hashing based method
closely related to bloom filters.

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

8

Count-Min Sketch Accuracy

Use A[h(x)] to estimate f(x).

Claim 1: We always have A[h(x)] ≥ f(x). Why?

• A[h(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

• A[h(x)] = f(x) +
∑

y ̸=x:h(y)=h(x) f(y).

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

9

Count-Min Sketch Accuracy

A[h(x)] = f(x) +
∑

y ̸=x:h(y)=h(x)
f(y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y ̸=x:h(y)=h(x)

f(y)

 =
∑
y ̸=x

Pr(h(y) = h(x)) · f(y)

=
∑
y ̸=x

1
m · f(y) = 1

m · (n− f(x)) ≤ n
m

What is a bound on probability that the error is ≥ 2n
m ?

Markov’s inequality: Pr
[∑

y ̸=x:h(y)=h(x) f(y) ≥ 2n
m

]
≤ 1

2 .

What property of h is required to show this bound? a) fully random
b) pairwise independent c) 2-universal d) locality sensitive

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array. 10

Count-Min Sketch Accuracy

Claim: For any x, with probability at least 1/2,

f(x) ≤ A[h(x)] ≤ f(x) + 2n
m .

To solve the (ϵ, k)-Frequent elements problem, set m = 2k
ϵ . How

can we improve the success probability? Repetition.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of Count-min sketch array.

11

Count-Min Sketch Repetition

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (count-min sketch)

Why min instead of mean or median? The minimum estimate is
always the most accurate since they are all overestimates of the true
frequency!

12

Count-Min Sketch Analysis

Estimate f(x) by f̃(x) = mini∈[t] Ai[hi(x)]

• For every x and i ∈ [t], we know that for m = 2k
ϵ , with probability

≥ 1/2:
f(x) ≤ Ai[hi(x)] ≤ f(x) + ϵn

k .

• What is Pr[f(x) ≤ f̃(x) ≤ f(x) + ϵn
k]? 1− 1/2t.

• To get a good estimate with probability ≥ 1− δ, set t = log(1/δ).
13

Count-Min Sketch

Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error ϵn

k with probability ≥ 1− δ in
O (log(1/δ) · k/ϵ) space.

• Accurate enough to solve the (ϵ, k)-Frequent elements
problem – distinquish between items with frequency n

k
and those with frequency (1− ϵ)nk .

• How should we set δ if we want a good estimate for all
items at once, with 99% probability?

14

Identifying Frequent Elements

Count-min sketch gives an accurate frequency estimate for
every item in the stream. But how do we identify the frequent
items without having to store/look up the estimated frequency
for all elements in the stream?

One approach:

• When a new item comes in at step i, check if its estimated
frequency is ≥ i/k and store it if so.

• At step i remove any stored items whose estimated
frequency drops below i/k.

• Store at most O(k) items at once and have all items with
frequency ≥ n/k stored at the end of the stream.

15

