COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2023. Lecture 11

- Problem Set 2 is due on Monday at 11:59pm.
- Midterm is in class Tuesday, 10/24. Thursday 10/19 will be devoted to midterm review.
- The grading on this week's quiz regarding the extra credit question had a bug. We will fix manually in the next few days.

Summary

Last Class:

- Locality sensitive hashing to solve the similarity search problem efficiently.
- MinHash as a locality sensitive hash function for Jaccard similarity.
- Brief look at SimHash as a locality sensitive hash function for cosine (dot product) similarity.

This Class:

- Introduce the frequent elements problem and its applications.
- Solution via the Count-Min sketch randomized data structure.

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of *n* items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

x ₁	x ₂	X ₃	x ₄	X 5	x ₆	X 7	x ₈	x ₉	x ₁	
5	12	3	3	4	5	5	10	3	5	

- What is the maximum number of items that can be returned?
 a) n
 b) k
 c) n/k
 d) log n
- Trivial with O(n) space store the count for each item and return the one that appears $\geq n/k$ times.
- Can we do it with less space? I.e., without storing all *n* items?

Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
- 'Iceberg queries' for all items in a database with frequency above some threshold.

Generally want very fast detection, without having to scan through database/logs. I.e., want to maintain a running list of frequent items that appear in a stream.

Frequent Itemset Mining

Association rule learning: A very common task in data mining is to identify common associations between different events.

- Identified via frequent itemset counting. Find all sets of *t* items that appear many times in the same basket.
- Frequency of an itemset is known as its support.
- A single basket includes many different itemsets, and with many different baskets an efficient approach is critical. E.g., baskets are Twitter users and itemsets are subsets of who they follow.

Issue: No algorithm using o(n) space can output just the items with frequency $\ge n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k - 1 (should not be output).

 (ϵ, k) -Frequent Items Problem: Consider a stream of n items x_1, \ldots, x_n . Return a set F of items, including all items that appear at least $\frac{n}{k}$ times and only items that appear at least $(1 - \epsilon) \cdot \frac{n}{k}$ times.

• An example of relaxing to a 'promise problem': for items with frequencies in $[(1 - \epsilon) \cdot \frac{n}{k}, \frac{n}{k}]$ no output guarantee.

Today: Count-min sketch – a random hashing based method closely related to bloom filters.

Will use $A[\mathbf{h}(x)]$ to estimate f(x), the frequency of x in the stream. I.e., $|\{x_i : x_i = x\}|$.

Count-Min Sketch Accuracy

Use $A[\mathbf{h}(x)]$ to estimate f(x).

Claim 1: We always have $A[h(x)] \ge f(x)$. Why?

• $A[\mathbf{h}(x)]$ counts the number of occurrences of any y with $\mathbf{h}(y) = \mathbf{h}(x)$, including x itself.

•
$$A[\mathbf{h}(x)] = f(x) + \sum_{y \neq x: \mathbf{h}(y) = \mathbf{h}(x)} f(y).$$

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.

Count-Min Sketch Accuracy

$$A[\mathbf{h}(x)] = f(x) + \sum_{y \neq x: \mathbf{h}(y) = \mathbf{h}(x)}$$

Expected Error:

error in frequency estimate

f(y)

$$\mathbb{E}\left[\sum_{y \neq x: h(y)=h(x)} f(y)\right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)$$
$$= \sum_{y \neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \le \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

Markov's inequality:
$$\Pr\left[\sum_{y \neq x:h(y)=h(x)} f(y) \ge \frac{2n}{m}\right] \le \frac{1}{2}.$$

What property of **h** is required to show this bound? a) fully random b) pairwise independent c) 2-universal d) locality sensitive

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.

Count-Min Sketch Accuracy

Claim: For any x, with probability at least 1/2,

$$f(x) \le A[\mathbf{h}(x)] \le f(x) + \frac{2n}{m}.$$

To solve the (ϵ, k) -Frequent elements problem, set $m = \frac{2k}{\epsilon}$. How can we improve the success probability? Repetition.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.

Count-Min Sketch Repetition

Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (count-min sketch)

Why min instead of mean or median? The minimum estimate is always the most accurate since they are all overestimates of the true frequency!

Count-Min Sketch Analysis

Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

- For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$: $f(x) \leq A_i[\mathbf{h}_i(x)] \leq f(x) + \frac{\epsilon n}{k}$.
- What is $\Pr[f(x) \le \tilde{f}(x) \le f(x) + \frac{\epsilon n}{k}]$? $1 1/2^t$.
- To get a good estimate with probability $\geq 1 \delta$, set $t = \log(1/\delta)$.

Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1 - \delta$ in $O(\log(1/\delta) \cdot k/\epsilon)$ space.

- Accurate enough to solve the (ϵ, k) -Frequent elements problem – distinguish between items with frequency $\frac{n}{k}$ and those with frequency $(1 - \epsilon)\frac{n}{k}$.
- How should we set δ if we want a good estimate for all items at once, with 99% probability?

Count-min sketch gives an accurate frequency estimate for every item in the stream. But how do we identify the frequent items without having to store/look up the estimated frequency for all elements in the stream?

One approach:

- When a new item comes in at step *i*, check if its estimated frequency is $\geq i/k$ and store it if so.
- At step *i* remove any stored items whose estimated frequency drops below *i/k*.
- Store at most O(k) items at once and have all items with frequency $\geq n/k$ stored at the end of the stream.