# COMPSCI 514: Algorithms for Data Science 

Cameron Musco
University of Massachusetts Amherst. Fall 2023.
Lecture 10

## Logistics

- Problem Set 2 is due Monday 10/16 at 11:59pm.
- The midterm is in class on Tuesday 10/24. Midterm study material will be posted shortly.
- We have a quiz this week, but not the next two weeks (due to the problem set and midterm).


## Summary

## Last Class:

- Discussion of practical algorithms for distinct items estimation (LogLog/HyperLogLog).
- Introduction of Jaccard similarity and the similarity research problem.


## This Class:

- Locality sensitive hashing for fast similarity search.
- MinHash as a locality sensitive hash function for Jaccard similarity
- Balancing false positives and negatives with LSH signatures and repeated hash tables.


## Search with Jaccard Similarity

$$
J(A, B)=\frac{|A \cap B|}{|A \cup B|}=\frac{\# \text { shared elements }}{\# \text { total elements }} .
$$

Want Fast Implementations For:

- Near Neighbor Search: Have a database of $n$ sets/bit strings and given a set $A$, want to find if it has high Jaccard similarity to anything in the database. $\Omega(n)$ time with a linear scan.
- All-pairs Similarity Search: Have $n$ different sets/bit strings and want to find all pairs with high Jaccard similarity. $\Omega\left(n^{2}\right)$ time if we check all pairs explicitly.

Will speed up via randomized locality sensitive hashing.

## Locality Sensitive Hashing

Goal: Speed up Jaccard similarity search (near neighbor and all-pairs similarity search).

Strategy: Locality sensitive hashing (LSH).

- Design a hash function where the collision probability is higher when two inputs are more similar (can design different functions for different similarity metrics.)



## LSH For Similarity Search

How does locality sensitive hashing (LSH) help with similarity search?


- Near Neighbor Search: Given item $x$, compute $h(x)$. Only search for similar items in the $\mathrm{h}(x)$ bucket of the hash table.
- All-pairs Similarity Search: Scan through all buckets of the hash table and look for similar pairs within each bucket.
- We will use $\mathrm{h}(x)=\mathrm{g}(\operatorname{MinHash}(x))$ where $\mathrm{g}:[0,1] \rightarrow[n]$ is a random hash function. Why?


## MinHashing

An Example: Locality sensitive hashing for Jaccard similarity.
Strategy: Use random hashing to map each set to a single hash value. The probably that two sets have colliding hash values will be proportional to their Jaccard similarity.

MinHash(A): [Andrei Broder, 1997 at Altavista]

- Let h : $U \rightarrow[0,1]$ be a random hash function
- $s:=1$
- For $x_{1}, \ldots, x_{|A|} \in A$

$$
\cdot \mathrm{s}:=\min \left(\mathrm{s}, \mathrm{~h}\left(x_{k}\right)\right)
$$



MinHash(A)

- Return s

Identical to our distinct elements sketch!

## MinHash Analysis

For two sets $A$ and $B$, what is $\operatorname{Pr}(\operatorname{MinHash}(A)=\operatorname{MinHash}(B))$ ?

$$
\operatorname{Pr}\left(\min _{x \in A} h(x)=\min _{y \in B} h(y)\right)=?
$$

- Since we are hashing into the continuous range [0, 1], we will never have $\mathrm{h}(x)=\mathrm{h}(y)$ for $x \neq y$ (i.e., no spurious collisions)



## MinHash Analysis

For two sets $A$ and $B$, what is $\operatorname{Pr}(\operatorname{MinHash}(A)=\operatorname{MinHash}(B))$ ?
Claim: $\operatorname{MinHash}(A)=\operatorname{MinHash}(B)$ only if an item in $A \cap B$ has the minimum hash value in both sets.


$$
\begin{aligned}
\operatorname{Pr}(\operatorname{MinHash}(A)=\operatorname{MinHash}(B)) & =? \frac{|A \cap B|}{\text { total \# items hashed }} \\
& =\frac{|A \cap B|}{|A \cup B|}=J(A, B) .
\end{aligned}
$$

Locality sensitive: the higher $J(A, B)$ is, the more likely $\operatorname{MinHash}(A), \operatorname{MinHash}(B)$ are to collide.

## Similarity Search with MinHash

Goal: Given a document $y$, identify all documents $x$ in a database with Jaccard similarity (of their shingle sets) $J(x, y) \geq 1 / 2$.

Our Approach:

- Create a hash table of size $m$, choose a random hash function $\mathrm{g}:[0,1] \rightarrow[\mathrm{m}]$, and insert every item $x$ into bucket $g($ MinHash(x)). Search for items similar to $y$ in bucket $g($ MinHash(y)).



## Reducing False Negatives

With a simple use of MinHash, we miss a match $x$ with $J(x, y)=1 / 2$ with probability $1 / 2$. How can we reduce this false negative rate?

Repetition: Run MinHash $t$ times independently, to produce hash values $M H_{1}(x), \ldots, M H_{t}(x)$. Apply random hash function $g$ to map all these values to locations in $t$ hash tables.

- To search for items similar to $y$, look at all items in bucket $\mathrm{g}\left(\mathrm{MH}_{1}(\mathrm{y})\right)$ of the $1^{\text {st }}$ table, bucket $\mathrm{g}\left(\mathrm{MH}_{2}(\mathrm{y})\right)$ of the $2^{\text {nd }}$ table, etc.
- What is the probability that $x$ with $J(x, y)=1 / 2$ is in at least one of these buckets, assuming for simplicity g has no collisions? $1-($ probability in no buckets $)=1-\left(\frac{1}{2}\right)^{t} \approx .99$ for $t=7$.
- What is the probability that $x$ with $J(x, y)=1 / 4$ is in at least one of these buckets, assuming for simplicity $g$ has no collisions? $1-($ probability in no buckets $)=1-\left(\frac{3}{4}\right)^{t} \approx .87$ for $t=7$.

Potential for a lot of false positives! Slows down search time.

## Balancing Hit Rate and Query Time

We want to balance a small probability of false negatives (a high hit rate) with a small probability of false positives (a small query time.)

Table 1


Create $t$ hash tables. Each is indexed into not with a single MinHash value, but with $r$ values, appended together. A length $r$ signature.

## Balancing Hit Rate and Query Time

Consider searching for matches in $t$ hash tables, using MinHash signatures of length $r$. For $x$ and $y$ with Jaccard similarity $J(x, y)=s$ :

- Probability that a single hash matches.

$$
\operatorname{Pr}\left[M H_{i, j}(x)=M H_{i, j}(y)\right]=J(x, y)=s .
$$

- Probability that $x$ and $y$ having matching signatures in repetition

$$
\text { i. } \operatorname{Pr}\left[M H_{i, 1}(x), \ldots, M H_{i, r}(x)=M H_{i, 1}(y), \ldots, M H_{i, r}(y)\right]=s^{r} .
$$

- Probability that $x$ and $y$ don't match in repetition $i: 1-s^{r}$.
- Probability that $x$ and $y$ don't match in all repetitions: $\left(1-s^{r}\right)^{t}$.
- Probability that $x$ and $y$ match in at least one repetition:

Hit Probability: $1-\left(1-s^{r}\right)^{t}$.

## The s-curve

Using $t$ repetitions each with a signature of $r$ MinHash values, the probability that $x$ and $y$ with Jaccard similarity $J(x, y)=s$ match in at least one repetition is: $1-\left(1-s^{r}\right)^{t}$.

$r$ and $t$ are tuned depending on application. 'Threshold' when hit probability is $1 / 2$ is $\approx(1 / t)^{1 / r}$. E.g., $\approx(1 / 30)^{1 / 5}=.51$ in this case.

## s-curve Example

For example: Consider a database with 10, 000, 000 audio clips. You are given a clip $x$ and want to find any $y$ in the database with $J(x, y) \geq .9$.

- There are 10 true matches in the database with $J(x, y) \geq .9$.
- There are 10,000 near matches with $J(x, y) \in[.7, .9]$.

With signature length $r=25$ and repetitions $t=50$, hit probability for $J(x, y)=s$ is $1-\left(1-s^{25}\right)^{50}$.

- Hit probability for $J(x, y) \geq .9$ is $\geq 1-\left(1-.9^{25}\right)^{50} \approx .98$
- Hit probability for $J(x, y) \in[.7, .9]$ is $\leq 1-\left(1-.9^{25}\right)^{50} \approx .98$
- Hit probability for $J(x, y) \leq .7$ is $\leq 1-\left(1-.7^{25}\right)^{50} \approx .007$

Expected Number of Items Scanned: (proportional to query time)

$$
\leq 10+.98 * 10,000+.007 * 9,989,990 \approx 80,000 \ll 10,000,000
$$

## Hashing for Duplicate Detection

|  | Hash Table | Bloom Filters | MinHash <br> Similarity Search | Distinct Elements |
| :---: | :---: | :---: | :---: | :---: |
| Goal | Check if x is a duplicate of any y in database and return $y$. | Check if $x$ is a duplicate of $y$ in database. | Check if x is a duplicate of any $y$ in database and return y . | Count \# of items, excluding duplicates. |
| Space | $O(n)$ items | $O(n)$ bits | $O(n \cdot t)$ items (when $t$ tables used) | $O\left(\frac{\log \log n}{\epsilon^{2}}\right)$ |
| Query Time | $O(1)$ | $O(1)$ | Potentially o( $n$ ) | NA |
| Approximate Duplicates? |  | $3$ |  | 2 |

All different variants of detecting duplicates/finding matches in large datasets. An important problem in many contexts!

## Generalizing Locality Sensitive Hashing

Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.


Cosine Similarity: $\cos (\theta(x, y))=\frac{\langle x, y\rangle}{\|x\|_{2} \cdot\|y\|_{2}}$.

- $\cos (\theta(x, y))=1$ when $\theta(x, y)=0^{\circ}$ and $\cos (\theta(x, y))=0$ when $\theta(x, y)=90^{\circ}$, and $\cos (\theta(x, y))=-1$ when $\theta(x, y)=180^{\circ}$


## SimHash for Cosine Similarity

SimHash Algorithm: LSH for cosine similarity.

$\operatorname{SimHash}(x)=\operatorname{sign}(\langle x, t\rangle)$ for a random vector $t$.

## SimHash for Cosine Similarity

What is $\operatorname{Pr}[\operatorname{SimHash}(x)=\operatorname{SimHash}(y)]$ ?
$\operatorname{SimHash}(x) \neq \operatorname{SimHash}(y)$ when the plane separates $x$ from $y$.


- $\operatorname{Pr}[\operatorname{SimHash}(x) \neq \operatorname{SimHash}(y)]=\frac{\theta(x, y)}{\pi}$
- $\operatorname{Pr}[\operatorname{SimHash}(x)=\operatorname{SimHash}(y)]=1-\frac{\theta(x, y)}{\pi} \approx \frac{\cos (\theta(x, y))+1}{2}$

Questions on MinHash and Locality Sensitive Hashing?

