
COMPSCI 514: Problem Set 4

Due: 12/01 by 11:59pm in Gradescope. Challenge Problems due 12/04 by 11:59pm.

Instructions:

• You are allowed to work on this problem set in a group of up to three members.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You should separately submit the core competency problems from any challenge problems you
choose to complete. These do not necessarily need to be submitted with the same groups.

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• You must show your work/derive any answers as part of the solutions to receive full credit.

Core Competency Problems

1. Eigendecomposition and SVD Practice (10 points)

1. (2 points) For any X ∈ Rn×d prove that the eigenvalues of XTX are real and non-negative.

2. (2 points) Let A ∈ Rd×d be symmetric. Prove that any eigenvalue λ of A must be real. Hint:
For the eigenvector x corresponding to λ, consider the quantity xTATAx.

3. (2 points) Prove that if A can be written as USUT where U has orthonormal columns and
S is diagonal, then every column of U is an eigenvector of A and the diagonal entries of
S are the corresponding eigenvalues. That is, all decompositions of this form are indeed
eigendecompositions.

4. (2 points) Prove that any symmetric A ∈ Rd×d can be written in its SVD as A = VΣV̄T

where V ∈ Rd×d and V̄ ∈ Rd×d are identical up to sign flips on their columns. That is, letting
vi and v̄i be the ith columns of V and V̄ respectively, we either have vi = v̄i or vi = −v̄i.
Hint: Start by writing A in its eigendecomposition and than transforming this into a valid
singular value decomposition.

5. (2 points) Let A ∈ Rd×d be a symmetric matrix. Consider the matrix B = A3 + 2I. Give a
formula relating the eigenvalues of B to those of A.

2. Eigendecomposition, SVD, and Matrix Inversion (6 points)

1. (2 points) LetA ∈ Rd×d be a non-singular symmetric matrix with eigendecompositionVΛVT .
Let Λ−1 be the diagonal matrix with diagonal entries equal to 1/λ1, . . . , 1/λd. Show that
A−1 = VΛ−1VT . Hint: To prove that B = A−1 for some matrix B it suffices to show that
AB = BA = I.
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2. (2 points) Consider any A ∈ Rn×d with SVD A = UΣVT . One of the most classic data
fitting methods, least squares regression is: given a vector y ∈ Rn, find:

b∗ ∈ argmin
b∈Rd

∥Ab− y∥22. (1)

The rows of A represent d-dimensional data points, the entries of y represent observations
at these points, and Ab∗ is the ‘line of best fit’, which attempts to fit these observations as
closely as possible with a linear function of the rows. Prove that b∗ = VΣ−1UTy satisfies
equation (1) above. Avoid using any calculus in your proof. Hint: Try plugging in b∗ and
see what you get. The solution will involve a projection matrix.

3. (2 points) Argue via part (2) that if x ∈ Rd is in the row span of A then B = VΣ−1UT

inverts the action of A on x. I.e., BAx = x. Similarly show that if x ∈ Rn is in the column
span of A, A inverts the action of B on x. I.e., ABx = x.

3. Spectral Graph Theory Practice (8 points)

1. (2 points) We class we saw that for any graph Laplacian L, λn(L) = 0 and vn = 1√
n
·1. Prove

that for any disconnected graph, there is a second eigenvector vn−1 which is orthogonal to
vn and has corresponding eigenvalue λn−1(L) = 0. Hint: Pick two arbitrary connected
components S1 and S2 of the graph and let vn−1 have the same value on each vertex in one
component, the same value on each vertex in the other component, and the same value on all
vertices outside the two components.

2. (2 points) Prove that for any connected graph with Laplacian L, λn−1(L) > 0. Hint: Show
that for any v which is not a scaling of the all ones vector that vTLv > 0. Use the identity
vTLv =

∑
(i,j)∈E(v(i)− v(j))2.

3. (2 points) Consider an unweighted undirected graph with adjacency matrix A ∈ Rn×n. Show
that λ1(A) ≥ c− 1 where c is the size of the largest clique in the graph (i.e., the largest set
of nodes that are all connected to each other.) Hint: Apply Courant-Fischer.

4. (2 points) Consider an unweighted undirected graph with adjacency matrix A ∈ Rn×n. Prove
that λ1(A) ≤ dmax, where dmax is the maximum degree of a vertex in the graph. Hint: Let
v1 be the top eigenvector of A and let i = argmaxj∈[n] |v1(j)|. Prove that we cannot have
[Av1](i) > dmax · v1(i).

4. Three Community Stochastic Block Model (10 points)

In class we applied spectral methods to partition a graph into two large subsets of vertices with
relatively few connections between them. We discussed how spectral clustering can be used to
partition a graph into k > 2 pieces by combining a rank-k spectral embedding with e.g., k-means
clustering. In this problem we will consider this method applied to the stochastic block model with
a larger number of communities.

Let Gn,3(p, q) be the distribution over random graphs where n is divided into three subsets
X,Y, Z each with n/3 nodes in them (assume that n is divisible by 3). Node i, j are connected
with probability p if they are in the same subset (X,Y, or Z) and with probability q < p if they
are in different subsets. Connections are all made independently.

1. (2 points) Consider drawing a random graph G ∼ Gn,3(p, q). Let A be its adjacency matrix
and L be its Laplacian, with nodes sorted by community id. What is E[A]? What is E[L]?
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2. (2 points) What are the top three eigenvectors and eigenvalues of E[A]? What are the bottom
three eigenvectors and eigenvalues of E[L]? Note: the eigendecompositions of E[A] and E[L]
are not unique. Just describe one valid set of orthogonal eigenvectors.

3. (2 points) Consider computing vn−1 and vn−2, the second and third smallest eigenvectors of
L. Then represent node i with the embedding xi = [vn−1(i),vn−2(i)]. Partition the nodes
by applying k-means clustering to this embedded data set with k = 3. Assume that you
can find the optimal clustering efficiently. If A,L were exactly equal to their expectations,
describe how this method would perform in recovering the communities X,Y, and Z. Note:
You don’t need to actually implement the method to answer this question. Just describe how
it should work in theory.

4. (4 points) Generate a 1500 node graph from Gn,3(p, q) with p = .2 and q = .04 and partition
it with the above spectral clustering algorithm applied to L. Plot the adjacency matrix A,
the spectral embedding (i.e., xi = [vn−1(i),vn−2(i)] for all i), and the output of the k-means
algorithm. How well does the algorithm perform?
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Challenge Problems

C1. Location Recovery via Low-Rank Approximation �

Suppose you are given all pairs distances between a set of n points p1,p2, . . . ,pn ∈ Rd, with n > d.
Formally, you are given an n× n matrix D with Di,j = ∥pi − pj∥22. You would like to recover the
location of the original points, up to possible translations, rotations, and reflections, which will not
change the pairwise distances.1 Let P ∈ Rn×d be the matrix with the n points as rows.

1. Let N be n × n matrix with every row equal to [∥p1∥22, ∥p2∥22, . . . , ∥pn∥22]. Prove that D =
N+NT − 2PPT . Hint: Expand out ∥pi − pj∥22 as a dot product.

2. Give an upper bound on rank(D).

3. Since we can only recover the points up to translations, assume without loss of generality
that the points have zero mean. I.e., that

∑n
i=1 pi = 0. Under this assumption, show that:

(PPT )i,j = −1

2

[
Di,j −

1

n

n∑
k=1

Di,k −
1

n

n∑
k=1

Dj,k +
1

n2

n∑
ℓ=1

n∑
k=1

Dk,ℓ

]
.

4. Describe an algorithm that, given D, uses the formula above to recover p1,p2, . . . ,pn ∈ Rd

up to rotation and translation. Hint: Even if you haven’t figured out part (3) yet, you can
use the given formula to solve this part.

5. Run your algorithm on the U.S. cities dataset provided in UScities.txt and plot the output.
The distances in the file are Euclidean distances ∥pi − pj∥2 so you need to square them to
obtain D. Does the output make sense? Plot the estimated city locations and identify a few
cities in your plot. Submit your code with the problem set.

6. Plot the spectrum of the distance matrixD from part (5). Is the rank ofD what was predicted
in part (2)? What might be an explanation for any deviations? Hint: Do our cities lie on a
2-dimensional plane?

C2. Location Recovery via Matrix Completion ��

The problem of location recovery studied in C1 is closely related to both triangulation in survey-
ing/mapping and matrix completion. Consider the setting of C1, but assume that for the U.S. cities
dataset we actually only know the distance from every city to three other reference cities. I.e., we
know just three columns D. Note: You’ll want to complete C1 before tackling this problem.

1. Describe an algorithm that recovers the full distance matrix D using just these three columns.
Hint: Given three columns of D, think about how to find four vectors that span all columns
of D, using the ideas of parts (1)-(3). Then think about how to recover all the columns of D
from this span.

2. Describe the geometric intuition, perhaps using a picture, behind why we can recover all
distances, and in turn city locations, given just the distances with three reference cities. This
intuition doesn’t have to exactly align with your algorithm above.

1Formally, you want to recover the points up to a translation plus multiplication by an orthogonal matrix, which
performs a unitary transformation https://en.wikipedia.org/wiki/Unitary_transformation
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3. Implement your algorithm and use it to recover the distance matrix D for the U.S. cities
dataset. There will be some error due to approximation errors. Let D̃ represent your recovered

distance matrix. What is ∥D−D̃∥F
∥D∥F ? Did you algorithm work well? Use your recovered matrix

D̃ to recover approximate positions of the U.S. cities. How do your results look in comparison
to those of part (4) of C1.

C3. Top Eigenvalue Approximation Via Krylov Subspace Methods ��

In this problem we will give an analysis of a Krylov subspace method for approximating the largest
eigenvalue of a symmetric matrix A ∈ Rd×d. Krylov subspace methods improve upon the power
method and are the dominant approach in practice for eigenvalue/eigenvector approximation, im-
plemented e.g., in the eigs methods in SciPy and Matlab.

For simplicity we will assume throughout this problem that A has all non-negative eigenvalues,
denoted by λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0. Let γ = λ1−λ2

λ1
be the eigenvalue gap.

1. Let x ∈ Rd be a random starting vector. For some integer t > 0, consider the Krylov matrix
K = [x,Ax,A2x, . . . ,Atx]. That is, K ∈ Rd×t+1 has ith column equal to Ai−1x. How
long does it take to compute K? Hint: Like in power method, you should avoid explicitly
computing Ai for any i.

2. Assume that K has full column rank and let Q ∈ Rd×t+1 be an orthonormal basis for the
column span of K. Q can be computed in O(dt2) time. Let λ̃1 = λ1(Q

TAQ). Argue that:

λ̃1 = max
v∈Rd:∥v∥2=1 and v∈span(Q)

vTAv = max
v∈Rd:v∈span(Q)

vTAv

∥v∥22
,

where span(Q) denotes the column span of Q. Conclude that λ̃1 ≤ λ1(A). Hint: Use
Courant-Fischer.

3. Let p : R → R be any degree t polynomial. Argue that p(A)x ∈ span(Q). Here, if p(x) =
c0 + c1x+ . . .+ ctx

t, we define p(A) = c0 · I+ c1 ·A+ . . .+ ct ·At. Conclude that

λ̃1 ≥ max
degree t polynomials p

xT p(A)Ap(A)x

∥p(A)x∥22
.

By parts (2) and (3), to show that (1 − ϵ)λ1(A) ≤ λ̃1 ≤ λ1(A), we just need to show that there

exists some degree t polynomial p such that xT p(A)Ap(A)x
∥p(A)x∥22

≥ (1− ϵ)λ1(A). We will do this below.

4. Write the random starting vector x ∈ Rd in the eigenvector basis as x = c1v1 + . . . + cdvd

(where v1, . . . ,vd are the eigenvectors of A). Argue that xT p(A)Ap(A)x
∥p(A)x∥22

≥ λ1 ·
c21·p(λ1)2∑d
i=1 c

2
i p(λi)2

.

5. Recall from the power method analysis shown in class that if x is chosen to have random

Gaussian entries, then with very high probability, maxj∈[d]

∣∣∣ cjc1 ∣∣∣ ≤ cd2 log d for some constant

c. Assuming this bound holds, argue that there exists a polynomial p with degree O(
√

1/γ ·
log(d/ϵ)) such that xT p(A)Ap(A)x

∥p(A)x∥22
≥ (1−ϵ)λ1. This establishes that (1−ϵ)λ1(A) ≤ λ̃1 ≤ λ1(A)

when t = O(
√
1/γ · log(d/ϵ)).

To do so, use part (4) along with the following Lemma, which is obtained by considering the
Chebyshev polynomials , which are a family of polynomials that grow as quickly as possible
outside a certain interval:
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Lemma 1. For any γ, δ ∈ (0, 1), there is a degree O
(√

1/γ · log(1/δ)
)

polynomial p̂ such

that p̂(1) = 1 and |p̂(x)| ≤ δ for any x < 1− γ.

6. How does the iteration bound in part (5) compare to the bound shown in class for power
method? When do you expect the Krylov subspace method to significantly outperform the
power method? Note: In class we showed that power method outputs an approximate
eigenvector with ṽ1 with ∥ṽ1 − v1∥2 ≤ ϵ. We could have also shown that λ̃1 = ṽT

1 Aṽ1 ≥
(1− ϵ)λ1 using essentially the same analysis and achieving the same iteration bound.
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