
COMPSCI 514: Problem Set 2

Due: 10/11 by 11:59pm in Gradescope.

Instructions:

• You are allowed to work on this problem set in a group of up to three members.

• You should choose your group from within your own class (either online or in-person).

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You must show your work/derive any answers as part of the solutions to receive full credit.

Core Competency Problems

1. Bloom Filters with Efficient Hash Functions (10 points)

In the Bloom filter analysis in class, we assume use of a fully independent hash function. Here we
will analyze a variant of Bloom filters that just uses 2-universal hashing.

Consider a Bloom filter variant consisting of k bit arrays: A1, . . . , Ak, each of length m, along
with k 2-universal hash functions h1, . . . , hk : U → [m]. Assume the hash functions are chosen
independently of each other. To insert an item x, we mark Ai[hi(x)] = 1 for all i ∈ [k]. To query
if an item x is in the dataset, we check if Ai[hi(x)] = 1 for all i ∈ [k] and return ‘YES’ if this
condition is true.

1. (2 points) Let x be some item that has not been inserted into the filter. Give an upper bound
on Pr[Ai[hi(x)] = 1] as a function of the number of inserted items n and the number of bits
in the array m.

2. (2 points) Use the above to give an upper bound on the false positive rate of the filter, as a
function of n, m, and k.

3. (2 points) The total space complexity used by the filter is s = m · k. Given a fixed space
budget s > 0, prove that the optimal setting of k (which minimizes the false positive rate
upper bound from part (2)) is k = 1

e ·
s
n . Note: As with standard Bloom filters, this optimal

setting may not be an integer.

4. (2 points) Using the above optimal setting of k, to store n items with false positive rate δ in
this data structure, how many bits of space do you need? Give your answer without using
big-O notation, i.e., explicitly calculate the leading constant. Note: Do your computations
using the exactly optimal setting of k, even if it is not an integer.

1

5. (2 points) Compare the above bound to what you would get using the standard Bloom filter

analysis in class assuming a false positive rate of
(
1− e

−kn
m

)k
. Is the leading constant on the

space usage better or worse? Note: Be careful about the bases of your logarithms, as which
base you use will affect the leading constants.

2. Approximating the Median in a Data Stream (8 points)

Given a set S ⊂ [n] of m distinct values and a value x, we define

rankS(x) := |{y ∈ S : y ≤ x}|

i.e., the number of values in S that are less or equal to x. We say x is an ϵ-approximate median if

(1/2− ϵ)m ≤ rankS(x) ≤ (1/2 + ϵ)m .

1. (2 points) Consider the following algorithm for sampling an element from a stream x1, x2, . . . , xm
where you may assume throughout this question that all values in the stream are distinct:

(a) Initialize s← x1

(b) For i = 1, 2, . . . ,m: with probability 1/i update s← xi.

(c) Return s

Prove that at the end of the stream, s is equally likely to be any of the elements in the stream,
i.e., s is chosen uniformly at random from the set of elements in the stream. Note that this
method doesn’t need to know the value of m in advance.

2. (2 points) Consider sampling r elements uniformly and independently at random (with re-
placement) from the stream and let Zt be the random variable corresponding to the number
of samples that are less or equal to zt where zt is the t-th smallest element in the stream.
Compute the expectation and variance of Zt.

3. (2 points) Consider an algorithm that samples r elements uniformly and independently at
random (with replacement) from the data stream and returns the median of the sampled
elements. How large must r be such that the output of this algorithm is an ϵ-approximate
median with probability at least 99/100? You may assume that ϵ < 1/4 and give your answer
in big-O notation. Hint: Consider the random variables Z(1/2−ϵ)m and Z(1/2+ϵ)m.

4. (2 points) Another way to achieve uniform sampling is, for each i ∈ [m], to randomly pick
a value yi is uniformly from [0, 1]. Then the stream element xi where i = argminj yj is
drawn uniformly at random from the set {x1, x2, . . . , xm}. However, suppose at the end of
the stream we are given a value s ∈ [m] and now need to return a random value in the set
{xs, xs+1, . . . , xm}. It suffices to return xi where i = argmins≤j≤m yj . Describe an algorithm
that uses O(logm) space in expectation to output argmins≤j≤m yj . The algorithm does not
know s while processing the stream.

3. Designing Locality Sensitive Hash Functions (10 points)

1. (2 points) The Hamming distance H(x, y) between two bit strings x, y ∈ {0, 1}n is the number
of positions in which they differ. Describe a locality sensitive hash function for the Hamming
distance with collision probability Pr[h(x) = h(y)] = 1−H(x, y)/n.

2

2. (2 points) Consider interpreting the bit strings as the sets of locations in which they contain
ones. I.e., x corresponds to the set {i : x(i) = 1}. How different can the MinHash collision
probability be from the collision probability obtained in part (1)? I.e., what is the maximum
possible value of |Pr[MH(x) = MH(y)]− (1−H(x, y)/n)|?

3. (2 points) The weighted Jaccard similarity between two sets A,B ⊂ U is defined as

Jw(A,B) =

∑
x∈A∩B w(x)∑
x∈A∪B w(x)

,

where w : U → [W] is some weight function that assigns each element to an integer weight in
1, . . . ,W , indicating its importance. Describe a locality sensitive hash function with collision
probability Pr[h(A) = h(B)] = Jw(A,B).

4. (2 points) For two vectors x, y ∈ Rn, design a locality sensitive hash function with col-

lision probability Pr[h(x) = h(y)] =
∑n

i=1 min(xi,yi)∑n
i=1 max(xi,yi)

. You may assume that x and y have

non-negative, finite precision, and bounded entries. I.e., each entry has value i/216 for some
i ∈ {0, 1, . . . , 216}.

5. (2 points) Let d : U × U → [0, 1] be any distance function mapping pairs of elements to a
distance in the range [0, 1]. Prove that, for there to exist a locality sensitive hash function
h with collision probability Pr[h(x) = h(y)] = 1 − d(x, y), then d must satisfy the triangle
inequality. I.e., for all x, y, z we must have d(x, z) ≤ d(x, y) + d(y, z). Hint: Rewrite
d(x, y) = Pr[h(x) ̸= h(y)].

Challenge Problems (Complete 1 of 2)

C1. A Different Approach for Distinct Elements (10 points) ��

Let D denote the number of distinct elements in a stream of m elements x1, . . . , xm where each
xℓ ∈ [n]. Let h1, . . . , hk : [n] → [n] be k independent hash functions where each hash function is
fully independent. For i ∈ [k] and g ∈ {1, 2, 4, 8, 16 . . . , 2⌈log2 n⌉−1}, compute:

ci,g = |{j ∈ [m] : hi(xj) ≤ g}|

Let αg = |{i ∈ [k] : ci,g = 0}|/k.

1. (2 points) Compute the expected value of αg as a function of D,n, and g.

2. (2 points) Prove k = O(γ−2 log n) suffices to ensure that with probability at least 0.99,

∀g , |αg − E[αg]| ≤ γ

3. (2 points) Assuming that n ≥ cD for some sufficiently large constant c, prove that there exists
g ∈ {1, 2, 4, 8, . . . , } such that 0.8 ≤ E[αg] ≤ 0.905. Hint: You way want to use the inequality
1− xy ≤ (1− x)y ≤ e−xy for x, y > 0.

4. (2 points) Prove that if
0.8− γ ≤ αg ≤ 0.905 + γ

3

then ln(αg)/ ln(1− g/n) is a 1+O(γ) approximation of D. You may assume γ < 0.05. Hint:
You may want to use the fact that for a function f ,

f(y)− |x− y|τ ≤ f(x) ≤ f(y) + |x− y|τ

where τ is any upper bound the absolute value of the derivative of f between x and y.

5. (2 points) Explain how it is possible to compute αg for all g in O(k log log n) space. You need
not account for the space used to store and evaluate the hash functions.

C2. Testing Stream Properties (10 points) ��

Consider a stream of the form x1, . . . , xm where each xj = (bj , aj) ∈ {−1, 1}× [n], i.e., each element
in the stream is a pair of values where the first value is either 1 or -1 and the second value is an
integer between 1 and n. Let fi be the number of pairs of the form (1, i) minus the number of
terms of the form (−1, i). E.g., for a stream

(1, 2), (1, 4), (−1, 2), (1, 4), (1, 3), (1, 1)

f1 = 1, f2 = 0, f3 = 1, and f4 = 2. Let h1, . . . , hk : [n]→ {−1, 1} be k independent hash functions
where each hash function is fully independent. For i ∈ [k], compute:

ci =
∑
j∈[m]

bjhi(aj)

i.e., ci is initialized to 0 and then when processing xj = (bj , aj) we update ci ← ci + bjhi(aj).

1. (2 points) Write an expression for ci in terms of f1, f2, . . . , fn and hi(1), . . . , hi(n). Prove that
if there exists some ℓ such that fℓ ̸= 0 then Pr[ci ̸= 0] ≥ 1/2.

2. (2 points) We say a stream is self-cancelling if f1 = f2 = . . . = fn = 0. Design a data
stream algorithm using O(log 1/δ) space that determines if a stream is self-cancelling with
probability at least 1− δ. Hint: Consider computing maxi∈[k] |ci| for some value of k.

3. (2 points) We say a stream is uniform if f1 = f2 = . . . = fn (but they don’t need to equal 0).
Design a data stream algorithm using O(log 1/δ) space that determines if a stream is uniform
with probability at least 1 − δ. Hint: Consider computing ci and di =

∑
ℓ∈[n] fhi(ℓ) where

f = (f1 + f2 + . . .+ fn)/n.

4. (2 points) We say a stream if t-sparse if at most t of the values f1, f2, . . . , fn are non-zero.
Design an algorithm using O(t · log(mn) + log(1/δ)) space that computes all the values
f1, f2, . . . , fn if the stream is t-sparse, with probability at least 1− δ.

5. (2 points) If a stream is t-sparse and all fi are non-negative, prove that the Count-Min sketch
can be used to compute all fi exactly in O(t log(n/δ)) space with probability at least 1−δ. You
may assume fully random hash functions (although it actually suffices to still use 2-universal
hash functions).

4

