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-+ Problem Set 1is due this Friday at 11:59pm.
-+ Quiz question on class pacing:

- Way too fast: 5.

-+ A bit too fast: 45.

- Just right: 53.

- A bit too slow: 2.

- Way too slow: 0.



Last Class:

- 2-universal and pairwise independent hash functions.
L “+
- Chebyshev's inequality and the law of large numbers. X ) A

+ The union bound.

- Application to hashing for load balancing.
s



Last Class:

- 2-universal and pairwise independent hash functions.
- Chebyshev's inequality and the law of large numbers.
- The union bound.

- Application to hashing for load balancing.
This Time:

Fponential concentration bounds and the central limit
—_—

theorem.
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My (not very popular) photo hosting service receives § download <

requests per day. Each download request is completed successfully N E—Dd
with probability 0.98. Give an upper bound on the probability that \l
my service fails to complete at least one request successfully. Hint:
do not assume independence of the request completions. <
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5 X
() K\J\ he expected temperature on Saturday is u = 75 degrees. The

4/« k\ varlance of the temperature is 0> = 12 degrees. Give an upper
Z YU é)@und on the probability that the temperature dees-rat lie between
9% and 85 degrees .
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Flipping Coins

T R S NP WY T
We flip n = 100 independent coins, each are heads with probability
1/2 and tails with probability 1/2. Let H be the number of heads.
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Flipping Coins

We flip n = 100 independent coins, each are heads with probability
1/2 and tails with probability 1/2. Let H be the number of heads.
n

E[H] = 2 =50 and Var[H] = % — 25



Flipping Coins

We flip n = 100 independent coins, each are heads with probability
1/2 and tails with probability 1/2. Let H be the number of heads.

A5 U‘\\ E[H] = 2 =50 and Var[H] = 7 = 25
o1
. arlgév_s ), Che\?@l&b’ev s: In Reality:
b

Pr(H > 60) < .833
Pr(H > 70) < .714
Pr(H > 80) < .625

C /g

\0
Pr(H > 60) < .25
Pr(H > 70) < .0625

Pr(H > 80) < .0278

Pr(H > 60) = 0.0284
Pr(H > 70) = .000039
Pr(H > 80) < 107?

=/

H has a simple Binomial distribution, so can compute these
probabilities exactly.



Tighter Concentration Bounds

To be fair.... Markov and Chebyshev's inequalities apply much more
generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very
general distributions?



Tighter Concentration Bounds

To be fair.... Markov and Chebyshev's inequalities apply much more
generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very
general distributions?

- Markov's: Pr(X > t) < @. First Moment.
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Tighter Concentration Bounds

To be fair.... Markov and Chebyshev's inequalities apply much more
generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very
general distributions?
- Markov's: Pr(X > t) < @. First Moment.

- Chebyshev's: Pr(]X — E[X]| > t) = Pr(]X — E[X]|? > ?) < Y2
Second Moment.

- What if we just apply Markov's inequality to even higher
moments?



A Fourth Moment Bound

Consider any random variable X:

Pr()X — E[X]| > t) = Pr ((x ~“EX)* > t")
N
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A Fourth Moment Bound

Consider any random variable X:
E (X~ E[X)’]

Pr(jX —E[X]| > t) = Pr ((x—E[X])" > t") < -




A Fourth Moment Bound

Consider any random variable X: ﬁ\crf\go\)'s mﬂP‘wl n (80

| Lol
Pr(X B 2 ) = P ((X B2 ) < - “ 9 |

Application to Coin Flips: Recall: n = 100 independent fair coins, H is
the number of heads.

- Bound the fourth moment:



A Fourth Moment Bound

Consider any random variable X

E (X~ E[X)’]

Pr(jX —E[X]| > t) = Pr ((x—E[X])‘* > t") < -

Application to Coin Flips: Recall: n = 100 independent fair coins, H is
the number of heads.

- Bound the fourth moment:

E[(H-E[M)'] = [(ZH ”

where H; = 1if coin flip i is heads and 0 otherwise.



A Fourth Moment Bound

Consider any random variable X: \i\/ s/
E [(x - ]E[X])"} /t

Pr(jX —E[X]| > t) = Pr ((x—E[X])‘* > t") < -

Application to Coin Flips: Recall: n = 100 independent fair coins, H is
the number of heads.

- Bound the fourth moment: RN
100 4 ¥ ZE\)(\\X)\L
{(H E[H]) } {(ZH ) } Z meE[H HHH] 1T C
=1 I;M

where H; = 1if coin flip i is heads and 0 otherwise. Then apply
some messy calculations...
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A Fourth Moment Bound

Consider any random variable X

E (X~ E[X)’]

Pr(jX —E[X]| > t) = Pr ((x—E[X])‘* > t") < -

Application to Coin Flips: Recall: n = 100 independent fair coins, H is
the number of heads.

- Bound the fourth moment:

M [(ZH —50) } = 3 GuE[HHHH] = 18625
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where H; = 1if coin flip i is heads and 0 otherwise. Then apply
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A Fourth Moment Bound

Consider any random variable X

E (X~ E[X)’]

Pr(jX —E[X]| > t) = Pr ((x—E[X])‘* > t") < -

Application to Coin Flips: Recall: n = 100 independent fair coins, H is
the number of heads.

- Bound the fourth moment:
100
E[(H-EM])'| =E (ZH —5o> = 3 ciwE[HHHH] = 1862.5
ikt

where H; = 1if coin flip i is heads and 0 otherwise. Then apply
some messy calculations...

- Apply Fourth Moment Bound):\Pr(|H —E[H]| > t) < 82,
_— —

Pr(H- B> ¢ %’: g



Tighter Bounds

p(A29Y) 1362.5 .
Chebyshev's: 4" Moment: _(D/“/ In Reality:
Pr(H > 60) < .25 Pr(H > 60) < .186 Pr(H > 60) = 0.0284
Pr(H > 70) < .0625 Pr(H > 70) < .0116 Pr(H > 70) = .000039
Pr(H > 80) < .04 Pr(H > 80) < .0023 Pr(H > 80) <107’
e = —
o
15 1415
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[ H: total number heads in 100 random coin flips. E[H] = 50.




Tighter Bounds

Chebyshev's: 41 Moment: In Reality:
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Can we just keep applying Markov's inequality to higher and higher
moments and getting tighter bounds?

[ H: total number heads in 100 random coin flips. E[H] = 50.




Tighter Bounds

6§19
Chebyshev's: 41 Moment: ﬁ In Reality:
Pr(H > 60) < .25 Pr(H > 60) < .186 Pr(H > 60) = 0.0284
Pr(H > 70) < .0625 Pr(H>70)<.0116  Pr(H > 70) = .000039
Pr(H > 80) < .04 Pr(H > 80) < .0023 Pr(H > 80) < 10~

Can we just keep applying Markov's inequality to higher and higher
moments and getting tighter bounds?

- Yes! To a point.

[ H: total number heads in 100 random coin flips. E[H] = 50.




Tighter Bounds

Chebyshev's: 41 Moment: In Reality:
Pr(H > 60) < .25 Pr(H > 60) < .186 Pr(H > 60) = 0.0284
Pr(H > 70) < .0625 Pr(H>70)<.0116  Pr(H > 70) = .000039
Pr(H > 80) < .04 Pr(H > 80) < .0023 Pr(H > 80) < 10~

Can we just keep applying Markov's inequality to higher and higher

moments and getting tighter bounds? )

. ﬂmh (O\\ﬁ W /qu§\ﬁ

- Yes! To a point. B~ nm-——ﬂzt:)()n\)u

- In fact - don’t need to just apply Markov’s to |X — E[X]|" for
some k. Can apply to %ny monotonic function f(|X E[X]])-

Pr (I ><L><

(P(lx EAD 20 T [P rEx]

[ H: total number heads in 100 random coin flips. E[H] = 50.
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Tighter Bounds

Chebyshev's: 41 Moment: In Reality:
Pr(H > 60) < .25 Pr(H > 60) < .186 Pr(H > 60) = 0.0284
Pr(H > 70) < .0625 Pr(H>70)<.0116  Pr(H > 70) = .000039
Pr(H > 80) < .04 Pr(H > 80) < .0023 Pr(H > 80) < 10~

Can we just keep applying Markov's inequality to higher and higher
moments and getting tighter bounds?

- Yes! To a point.

- In fact - don't need to just apply Markov's to |X — E[X]\k for
some k. Can apply to any monotonic function f(|X — E[X]|).

- Why monotonic?

[ H: total number heads in 100 random coin flips. E[H] = 50.




Tighter Bounds

M9
Chebyshev's: 41 Moment: In Reality:
Pr(H > 60) < .25 Pr(H > 60) < .186 Pr(H > 60) = 0.0284
Pr(H > 70) < .0625 Pr(H>70)<.0116  Pr(H > 70) = .000039
Pr(H > 80) < .04 Pr(H > 80) < .0023 Pr(H > 80) < 10~

Can we just keep applying Markov's inequality to higher and higher
moments and getting tighter bounds?

- Yes! To a point.

- In fact - don't need to just apply Markov's to |X — E[X]\k for
some k. Can apply to any monotonic function f(|X — E[X]|).

- Why monotonic? Pr(jX — E[X]| > t) = Pr (F(]X — E[X]|) > (1))

[ H: total number heads in 100 random coin flips. E[H] = 50.




Exponential Concentration Bounds

Moment Generating Function: Consider for any t > 0:

Mq(X) = et *—EX)

—_
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Exponential Concentration Bounds

Moment Generating Function: Consider for any t > 0:

Mi(X) = 0P — 3 tk(x—hi?‘ilxl)k
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Exponential Concentration Bounds

Moment Generating Function: Consider for any t > 0:

Mi(X) = 0P — 3 tk(x—hi?‘ilxl)k

k=0

-+ M¢(X) is monotonic for any t > 0.
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Exponential Concentration Bounds

Moment Generating Function: Consider for any t > 0:

Mi(X) = ol (X—EX)) _ iﬁ()(—hi?‘:[x])k

k=0 —_

-+ M¢(X) is monotonic for any t > 0.

- Weighted sum of all moments, with t controlling how slowly the
weights fall off (larger t = slower falloff).
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Exponential Concentration Bounds

Moment Generating Function: Consider for any t > 0:

v = th(X — E[X])F
i) = ety EEE B0
k=0 ’

- M¢(X) is monotonic for any t > 0.

- Weighted sum of all moments, with t controlling how slowly the
weights fall off (larger t = slower falloff).

- Choosing t appropriately lets one prove a number of very
powerful exponential concentration bounds (exponential tail
bounds).

1



Exponential Concentration Bounds

Moment Generating Function: Consider for any t > 0: .

. _ FX-EX) _
) = ¢

- Mg(X) is monotonic for any¢. > 0.

- Weighted sum of all moments, with £controlling how slowly the
weights fall off (larger® = slower falloff).

- ChoosingZappropriately lets one prove a number of very

powerful exponential concentration bounds (exponential tail
bounds).

. gernoff bound, Bernstein inequalities-) Hoeffding's inequality,
zuma's inequality, Berry-Esseen theorem, etc.
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Exponential Concentration Bounds

Moment Generating Function: Consider for any t > 0:
o) _ o X = E[X)*
M(X) = e (X=EX]) _ Z —

k=0

- M¢(X) is monotonic for any t > 0.

- Weighted sum of all moments, with t controlling how slowly the
weights fall off (larger t = slower falloff).

- Choosing t appropriately lets one prove a number of very
powerful exponential concentration bounds (exponential tail
bounds).

- Chernoff bound, Bernstein inequalities, Hoeffding's inequality,
Azuma'’s inequality, Berry-Esseen theorem, etc.

- We will not cover the proofs in this class.
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Bernstein Inequality

o005 ¢ Gy M

Bernstein Inequality: Consider independent random variables
~— X1..... X, all falling in [-M,M]. Let %xq and o? =
Var[> 1L, Xj] = i, Var[X]]. Forany t > 0:
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Bernstein Inequality

Bernstein Inequality: Consider independent random variables
X1, ..., Xy all falling in [-M,M]. Let p = E[>1,X] and o? =
Var[>1, Xi] = 3L, Var[X;]. For any t > 0: = o020

e A
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Pr X; — >t < 2ex S o
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Assume that M =1 and plugint=s-o fors <o.
M= =2
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Bernstein Inequality

Bernstein Inequality: Consider independent random variables
X1,..., %y all falling in [-17]. Let p = E[>X1,X] and o? =
Var[> 1, Xi] = S°L, Var[X]]. For any s > 0:

n 2
S
Pr< g Xi— >Srr><2exp 4).

o
Assume that M =1 and plugint=s-o fors <o.
B
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Bernstein Inequality

Bernstein Inequality: Consider independent random variables
X1,..., %y all falling in [-17]. Let p = E[>X1,X] and o? =
Var[> 1, Xi] = S°L, Var[X]]. For any s > 0:

2
Pr >so | <2exp <4>

Assume that M =1 and plugint=s-o fors <o. \/h,/(x) _
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Compare to Chebyshev's: Pr (|37, Xj — u| > s0) < 2. &40 S
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Bernstein Inequality

Bernstein Inequality: Consider independent random variables
X1,..., %y all falling in [-17]. Let p = E[>X1,X] and o? =
Var[> 1, Xi] = S°L, Var[X]]. For any s > 0:

paaa=——
n 57
ZX, — | > Srr) < 2exp <4> .

Pr <
(=1

Assume that M =1 and plugint=s-o fors <o.

Compare to Chebyshev's: Pr (|37, X — p| > so) < 5.

- An exponentially stronger dependence on s!

12



Comparision to Chebyshev’'s

Consider again bounding the number of heads H in n = 100
independent coin flips.

Chebyshev’s: Bernstein: In Reality:
Pr(H > 60) < .25 Pr(H > 60) <_.21 Pr(H > 60) = 0.0284
== —=
Pr(H>70) <.0625  Pr(H>70)<.005 Pr(H>70)=.000039
Pr(H > 80) < .04 Pr(H >80) <47 Pr(H > 80) < 1077
e >/‘ N

H: total number heads in 100 random coin flips. E[H] = 50.
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Comparision to Chebyshev’'s

Consider again bounding the number of heads H in n =100
independent coin flips.

Chebyshev’s: Bernstein: In Reality:
Pr(H > 60) < .25 Pr(H > 60) < .21 Pr(H > 60) = 0.0284
Pr(H >70) <.0625  Pr(H>70)<.005 Pr(H>70)=.000039
Pr(H > 80) < .04 Pr(H > 80) <47 Pr(H > 80) < 1077

Getting much closer to the true probability.

H: total number heads in 100 random coin flips. E[H] = 50. //
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