COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2022.
Lecture 4

- Problem Set 1 due next Friday 9/23, at 11:59pm.

- Second quiz will be released today after class, due
Monday 8:00pm.

- I'will hold additional office hours next Tuesday 11am-12pm.

Last Class: v/@

- Expected collision analysis for hashing and collision free °
hashing via Markov's inequality. Gives O(1) query time and 0
O(m?) space for item look-up problem.

-[2-level hashing and its analysis via linearity of expectation.
Gives optimal O(1) query time and O(m) space. 87-
\

P

Last Class:
- Expected collision analysis for hashing and collision free
hashing via Markov's inequality. Gives O(1) query time and
O(m?) space for item look-up problem.

- 2-level hashing and its analysis via linearity of expectation.
Gives optimal O(1) query time and O(m) space.

This Time:
(2-universal and pairwise independent hash functions

- Hashing for load balancing. Motivating:

- Stronger concentration inequalities: Chebyshev's
inequality, exponential tail bounds, and their connections
to*t'mLmc large numbers and central limit theorem.

- The union bound to bound the probability that one of
multiple possible correlated events happens.

Efficiently Computable Hash Function

So Far: we have assumed a fully random hash function h(x) with
Prlh(x) =i] = 1 fori€1,...,nand h(x), h(y) independent for x # .
—_— P

Efficiently Computable Hash Function

So Far: we have assumed a fully random hash function h(x) with

Prlh(x) =i = 1 fori€1,...,n and h(x), h(y) independent for x # .
- To compute a random hash function we have to store a table of
_xvalues and their hash values. Would take at least O(m) space

and O(m) query time to look up h(x) if we hash m values.
Making our whole quest for O(1) query time pointless!

3 [} \, x h(x)
ICO W [[45
1 x |1004

Q\)(ﬁ))r (o\né(l)--“" x | 10

T

. Xn | 12 |

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probab@ A ran-
dom hash function from h : U — [n] is two universal if:

o D W)l 0
P) - \”C)ﬂ

)y o

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

1
Prih(x) = h(y)] < -

Exercise: Rework the two level hashing proof to show that this

property is really all that is needed.
oten) Ol

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

1
Prih(x) = h(y)] < -

Exercise: Rework the two level hashing proof to show that this
property is really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],
Pr[h(x) = h(y)] = + (so a fully random hash function is 2-universal)

—_—

Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

1
Prih(x) = h(y)] < -

Exercise: Rework the two level hashing proof to show that this
property is really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],
Pr[h(x) = h(y)] = + (so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with p > |U|. Choose random
a,b € [p] with a # 0. Represent x an an integer and let
il

h(x)=(ax+b mod p) mod n. 5

Pairwise Independence

Another common requirement for a hash function:

Pairwise Independence

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i,j € [n]:

Prlh() = inh(y) =/ = .

[,

(nbOJD /Pf (("pr)>

.J

|
h\/\"l

.q

Pairwise Independence

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i,j € [n]:

Prlh() = inh(y) =/ = .
L o——

\
— AW
@rvwse hash functions are 2- umve@ Vo prk) @J e

Prih(x) = h(y)] = ZPr[h =inh(y)=i
m_o -—-C—T__
3 “’ ha

Pairwise Independence

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i,j € [n]:

Prlh() = inh(y) =1 = .

Pairwise hash functions are 2-universal:
Pr[h(x)]_ZPr[h _mh(y):/]:n-1 =

A closely related (ax + b) mod p construction gives pairwise
independence on top of 2-universality.

Pairwise Independence

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i,j € [n]:

Prlh() = inh(y) =1 = .

Pairwise hash functions are 2-universal:
Pr[h(x)]_ZPr[h _mh(y):/]:n-l:
A closely related (ax + b) mod p construction gives pairwise

independence on top of 2-universality.

Remember: A fully random hash function is both 2-universal and
pairwise independent. But it is not efficiently implementable.

Another Application

Randomized Load Balancing:

l Client Requests

/7N
AR AR .. 4D

o 1itt] (o rttr] [o1111]

Server 1 Server 2 Server k

Another Application

Randomized Load Balancing:

l Client Requests

/7N
AR AR .. 4D

o 1itt] (o rttr] [o1111]

Server 1 Server 2 Server k

Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

- Often assignment is done via a random hash function. Why?

Weakness of Markov’s

o
E[R]] = =

0 K‘QV\/\V}VQ

\\(, @—)\/\9!_3

Py 7P reglests o wer

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

=

Weakness of Markov’s

n n
. . . n
E[R;] = ZE[Hrequest/’ assigned to il = Z Pr[j assigned to I] = R

=1 — o

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

Weakness of Markov’s

n n
. LN
E[R;] = ZE[Hrequest/’ assigned to il = Z Pr[j assigned to I] = R
j=1 j=1
If we provision each server be able to handle twice the AN

expected load, what is the probability that a server is \Q
overloaded?

(B ER) <-

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

Weakness of Markov’s

n n
. LN
E[R;] = ZE[Hrequest/’ assigned to il = Z Pr[j assigned to I] = R
j=1 j=1
If we provision each server be able to handle twice the
expected load, what is the probability that a server is

overloaded?

Applying Markov’s Inequality
ER] 1

2E[R] 2’

Pr[R; = 2E[R]] <

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

Weakness of Markov’s

n n
. LN
E[R;] = ZE[Hrequest/’ assigned to il = Z Pr[j assigned to I] = R
j=1 j=1
If we provision each server be able to handle twice the
expected load, what is the probability that a server is

overloaded?

Applying Markov’s Inequality
ER] 1

2E[R] 2’

Pr[R; = 2E[R]] <

Not great...half the servers may be overloaded.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

Chebyshev's inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

Chebyshev's inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:

Pr(|X| > t) = Pr(X?> > t%).

—~

Chebyshev's inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:
Pr(|X| > t) = Pr(X?> > t%).

X? is a nonnegative random variable. So can apply Markov's
inequality:

Chebyshev's inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:
Pr(|X| > t) = Pr(X?> > t%).

X? is a nonnegative random variable. So can apply Markov's
inequality:

Chebyshev's inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:
Pr(|X| > t) = Pr(X?> > t%).

X? is a nonnegative random variable. So can apply Markov's
inequality:

Pr(X| > 1) = Pr(> £2) < K]

Chebyshev's inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:
Pr(|X| > t) = Pr(X?> > t%).

X? is a nonnegative random variable. So can apply Markov's
inequality:

Chebyshev’s inequality:
2
Pr(IX| > t) = Pr(X* > t?) < EE)Z(I

—_—

Chebyshev's inequality

With a very simple twist, Markov's inequality can be made
much more powerful.

For any random variable X and any value t > 0:

Pr(|X| > t) = Pr(X*> > t%).

X? is a nonnegative random variable. So can apply Markov's
inequality:

Chebyshev's inequality: fgjﬁ\ @ng
N, ex Vepg s < Y

(by plugging in the random variable X — E[X])

Chebyshev's inequality

Pr(X ~ £ > 1) <

X: any random variable, t,s: any fixed numbers.

Chebyshev's inequality

Pr(IX — E[X]| > 1) Vad\]

What is the probability that X falls s standard deviations from it's
mean?

3 2 -1 0 1 2

e Ve) s L
Pr (b B> e fmrl0) < gy S

X: any random variable, t,s: any fixed numbers.

Chebyshev's inequality

Var[X]
t2

PrX —E[X]| > 1) <

What is the probability that X falls s standard deviations from it's
mean?

Standard Deviations

Var[X] 1

Pr(IX — E[X]| > s - /Var[X]) < T = F

X: any random variable, t,s: any fixed numbers.

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

1

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = % 27:1 X; approximate the
true mean u?

1

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random

variables X X, with mean_y and variance o2
ERRERRAYY . z
i ES M
How well does the sample average S=1 Z, 1 X; approximate the
true mean u?

XﬂS]:Var ZX] = —l- VOJ(_%X\) _
S ﬁ = \'\.,-z/w‘
T - = . wAv o=
& <Y I AN

1

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = % 27:1 X; approximate the
true mean u?

Var[S] = Var

1 < 1 <
n;xi] :W;Var[x,-]

1

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = % 27:1 X; approximate the
true mean u?

Var[S] = Var

1 < 1 < 1
nzx,] :ﬁZ\/ar[X,]:ﬁnU2
i=1 i=1

1

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = % 27:1 X; approximate the
true mean u?

Var[S] = Var

~

1 < 1 < 1
> X| == Var[X] == -n-o>=—.
P = = o=

1

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = % 27:1 X; approximate the
true mean u?
2

1< 1 <& 1 o
nzxi] :ﬁZVar[X,-]:ﬁW%f:F.
i=1 i=1

By Chebyshev’s Inequality: for any fixed value e > 0,

M ; 2
Pr(|S — E[S]| > ¢) < V%Z[S] ==

Var[S] = Var

1

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = % 27:1 X; approximate the
true mean u?
2

1< 1 <& 1 o
nzxi] :ﬁZVar[X,-]:ﬁW%f:F.
i=1 i=1

By Chebyshev's Inequality: for any fixed value ¢ > 0,
Var[S] o?
—r =

nez’
—_

Var[S] = Var

Pr(

CRUERE

_-—

1

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = % 27:1 X; approximate the

true mean pu? n n EX\
1 1 1 o?
n;x,] :ﬁ§Var[X,]:ﬁﬂa2:F

By Chebyshev's Inequality: for any fixed value € > 0,

b %;L\ 2
Eé_“ EL RS B

\. . ne?
s

Law of Large NG.r—nbers: with enough samples n, the sample average
will always concentrate to the mean.

Var[S] = Var

1

Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X, ..., X, with mean x and variance .

How well does the sample average S = % 27:1 X; approximate the
true mean u?
2

1< 1 <& 1 o
nzxi] :ﬁZVar[X,-]:ﬁ-r%f:F.
i=1 i=1

By Chebyshev's Inequality: for any fixed value ¢ > 0,
Var[S] o?
< J—

- e ne2’

Var[S] = Var

Pr([S—ul =€)

Law of Large Numbers: with enough samples n, the sample average
will always concentrate to the mean.

Ennotihow from vanilla Markov’'s inequality.

Load Balancing Variance

We can write the nem ber of requests assigned to server i, R; as:

3 e IIIKQ—S - n —
W R=D Ry

where R;; is 1if request j is assigned to server i and 0 otherwise.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

12

Load Balancing Variance

We can write the number of requests assigned to server i, R; as:
n
Var[R] =) "Var[R;] (linearity of variance)
j=1

where R;; is 1if request j is assigned to server i and 0 otherwise.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

12

Load Balancing Variance

We can write the number of requests assigned to server i, R; as:

@\/ @ Var[R,'] _ Z Var[R(-J] (lil’]earity of VarianCE)
1

[

where R;; is 1if request j is assigned to server i and 0 otherwise.

Vi - ‘ L
Var[R;] :IE[(R,-J—IE[R,-J])} = |—|<(‘ _i> | Q_ |;> (0-%3
)
O V"\F‘ [-_'_

=L <
ke

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

12

Load Balancing Variance

We can write the number of requests assigned to server i, R; as:

n
Var[R]] = > " Var[R;] (linearity of variance)
j=1
where R;; is 1if request j is assigned to server i and 0 otherwise.

Var[Rjj] = E {(Ru - E[R"J]ﬂ

— Pr(Ri; =1)- (1= E[R;])’ +Pr(R;; = 0) - (0 — E[R;}])’

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

12

Load Balancing Variance

We can write the number of requests assigned to server i, R; as:

n
Var[R]] = > " Var[R;] (linearity of variance)
j=1
where R;; is 1if request j is assigned to server i and 0 otherwise.

Var[Rjj] = E {(Ru - E[R"J]ﬂ

o

f(Riy=1)- (1= E[R;,])’ +Pr(R;; = 0)- (0 —E[R;)])’

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

12

Load Balancing Variance

We can write the number of requests assigned to server i, R; as: /

LS ._Z\Q‘> = Var[R]] = > " Var[R;] (linearity of variance)
s - |
——

where R;; is 1if request j is assigned to server i and 0 otherwise.

Var[Ryj] = E {(R,-,,- - E[Rf,j])z]

— Pr(Ri; =1)- (1= E[R;])’ +Pr(R;; = 0) - (0 — E[R;}])’

.@;1);(1;).(0;)2
KO \—A E

R;: number of requests assigned to server i.

n: total number of requests, k: number of servers randomly assigned requests,

12

Load Balancing Variance

We can write the number of requests assigned to server i, R; as:

Var[Ri] = ZVar[R,-J] ~ (linearity of varianc’e)
[f \Iv\/(p\l)B "’j’L

where R;; is Tif requestj is aSS|gned to server i and 0 otherwise.
Var[R,-’j] =K [(Ri,j — E[R,‘J])]

— Pr(Ri; =1)- (1= E[R;])’ +Pr(R;; = 0) - (0 — E[R;}])’

Pl e
N

7 N

—_—

\

= =
T2 N~
N

+

7N

—_

\
= =
/N
(@]

\
==
N~

N

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

12

Bounding the Load via Chebyshevs

Letting R; be the number of requests sent to server i, E[R;] = % and
Var[Ri] < 7.
e

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

13

Bounding the Load via Chebyshevs

Letting R; be the number of requests sent to server i, E[R;] = % and

Var[Ri] < 7.
Applying Chebyshev's: 5
Pr(rR>2") <pr |R—J]:;[R]|_ \/("dm - e
— R k k:)')_ (n/K)
14X S
~Y n' SN B VaVaVaVaViial 0

— an
ko 3

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

13

Bounding the Load via Chebyshevs

Letting R; be the number of requests sent to server i, E[R;] = % and
Var[Ri] < 7.
Applying Chebyshev's:

2n n n/k
Pr (R,- > k) < Pr <|R,- _E[R]| > E) < 2

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

13

Bounding the Load via Chebyshevs

Letting R; be the number of requests sent to server i, E[R;] = % and
Var[Ri] < 7.

Applying Chebyshev's:

2n n n/k k
Pr (R,- > k) <Pr(R—ER] >) < =

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

13

Bounding the Load via Chebyshevs

Letting R; be the number of requests sent to server i, E[R;] = % and
Var[Ri] < 7.

Applying Chebyshev's:

2n n n/k k
Pr (R,- > k) <Pr(R—ER] >) < =
-

- Overload probability is extremely small when k < n!

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

13

Bounding the Load via Chebyshevs

Letting R; be the number of requests sent to server i, E[R;] = % and

VRl < ¢ s TN BN N
Applying Chebyshev's: " m(,\/\\»zs\’i
n n/k k
Pr (R,- > % <Pr(R—ER] >) < nzﬁkz =
—
C

- Overload probability is extremely small when k < n!

- Might seem counterintuitive - bound gets worse as k grows.

- When kis large, the number of requests each server sees in
expectation is very small so the law of large numbers doesn’t
‘kick in’.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

13

Maximum Server Load

What is the probablllty that the maxmwd exceeds
2 - E[R; k l.e., that some server is overloaded if we give
each 22 capamty?

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[Rj] = #. Var[R] = {.

14

Maximum Server Load

What is the probability that the maximum server load exceeds

2-E[Rj] = %” l.e., that some server is overloaded if we give
each 2! capacity?

Pr <max(R) > 2}:)

—

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[Rj] = #. Var[R] = {.

14

Maximum Server Load

What is the probability that the maximum server load exceeds

2-E[Rj] = %” l.e., that some server is overloaded if we give
each 2! capacity?

Pr<max(R,-)22kn> —Pr({R122n} U [Rzzm} U...u [hazn
1

I3
—_—

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[Rj] = #. Var[R] = {.

14

Maximum Server Load

What is the probability that the maximum server load exceeds
2-E[Rj] = %” l.e., that some server is overloaded if we give
each 2! capacity?

2n 2n 2n 2n
Pr <m:aX(R") > i?) = Pr ({R1 > k} or [Rz > fe} or ... or {Rk > /?D

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[Rj] = #. Var[R] = {.

14

Maximum Server Load

What is the probability that the maximum server load exceeds
2-E[R]] = 2. le, that some server is overloaded if we give
each 2 capacity?

Pr (m,_aX(Ri) > 2;?) =P (0 {ﬂ})

P—

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[R;] = #. Var[Rj] = £.

14

Maximum Server Load

What is the probability that the maximum server load exceeds
2-E[R]] = 2. le, that some server is overloaded if we give
each 2 capacity?

We want to show that Pr (Uf;1 R > ZW”]) is small.

~

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[R;] = #. Var[Rj] = £.

14

Maximum Server Load

What is the probability that the maximum server load exceeds
2-E[R]] = 2. le, that some server is overloaded if we give
each 2 capacity?

Pr(mantR) >) =P (U oS 2’:D

We want to show that Pr (Uf;1 R > ZW”]) is small.

How do we do this? Note that Ry, ..., Ry are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[R;] = #. Var[Rj] = £.

14

The Union Bound

Union Bound: For any random events A, A, ..., Ap,

PI’(Aj UAU... UAk) < PI’(A1) + PI’(Az) + ...+ El’!Ak)

- — —

15

The Union Bound

Union Bound: For any random events A, A, ..., Ap,

PI’(Aj UAU... UAk) < PI’(A1) + PI’(Az) + ...+ Pr(Ak)

15

The Union Bound

Union Bound: For any random events A, A, ..., Ap,

PI’(Aj UAU... UAk) < PI’(A1) + PI’(Az) + ...+ Pl’(Ak)
—

<

ntpeent
When is the union bound tight? é‘é)i\ﬁ‘

15

The Union Bound

Union Bound: For any random events A, A, ..., Ap,

PI’(Aj UAU... UAk) < PI’(A1) + PI’(Az) + ...+ Pl’(Ak)

When is the union bound tight? When A,, ..., A, are all disjoint.

15

The Union Bound

Union Bound: For any random events A, A, ..., Ag,

PI’(Aj UAU... UAk) < PF(A1) + PI’(Az) +...+ Pr(Ak)

When is the union bound tight? When A,, ..., A, are all disjoint.

15

Applying the Union Bound

What is the probability that the maximum server load exceeds
2-E[R] = 2. l.e, that some server is overloaded if we give each %
capacity?

=)o (U - 7]

=1

n: total number of requests, k: number of servers randomly assigned requests,

R;: number of requests assigned to server i. E[Rj] = 7. Var[R]] = 7. 5

Applying the Union Bound

What is the probability that the maximum server load exceeds
2-E[R] = 2. l.e, that some server is overloaded if we give each %

capacity?

o <m?x(R,) . 2;7) _ pr <0 [R,» > TD (e

=1

k
< ZPr <[R,- > TD (Union Bound)
i—1

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[Rj] = 7. Var[R]] = 7.

16

Applying the Union Bound

What is the probability that the maximum server load exceeds
2-E[R] = 2. l.e, that some server is overloaded if we give each %
capacity?

Pr (mle(R:‘) > 2;) =Pr <U {R[- 2”)

=1

Pr <[R,- > MD (Union Bound)

<

(Bound from Chebyshev's)

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[Rj] = 7. Var[R]] = 7.

16

Applying the Union Bound

What is the probability that the maximum server load exceeds
2-E[R] = 2. l.e, that some server is overloaded if we give each %
capacity?

Pr (mle(R:‘) > 2;) =Pr <U {R[- 2”)

=1

Pr <[R,- > MD (Union Bound)

= (Bound from Chebyshev's)

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[Rj] = 7. Var[R]] = 7.

16

Applying the Union Bound

What is the probability that the maximum server load exceeds
2-E[R] = 2. l.e, that some server is overloaded if we give each %
capacity?

Pr (mle(R:‘) > 2;) =Pr <U {R[- ZQD

=1

2n .
Pr <[R,- > D (Union Bound)
= (Bound from Chebyshev's)

As long as kR < O(y/n), with good probability, the maximum server
load will besmatt (compared to the expected load).

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. E[Rj] = 7. Var[R]] = 7.

16

