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Logistics

• Problem Set 1 due next Friday 9/23, at 11:59pm.
• Second quiz will be released today after class, due
Monday 8:00pm.

• I will hold additional office hours next Tuesday 11am-12pm.
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Last Time

Last Class:

• Expected collision analysis for hashing and collision free
hashing via Markov’s inequality. Gives O(1) query time and
O(m2) space for item look-up problem.

• 2-level hashing and its analysis via linearity of expectation.
Gives optimal O(1) query time and O(m) space.

This Time:

• 2-universal and pairwise independent hash functions

• Hashing for load balancing. Motivating:
• Stronger concentration inequalities: Chebyshev’s
inequality, exponential tail bounds, and their connections
to the law of large numbers and central limit theorem.

• The union bound to bound the probability that one of
multiple possible correlated events happens.
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Efficiently Computable Hash Function

So Far: we have assumed a fully random hash function h(x) with
Pr[h(x) = i] = 1

n for i ∈ 1, . . . ,n and h(x),h(y) independent for x ̸= y.

• To compute a random hash function we have to store a table of
x values and their hash values. Would take at least O(m) space
and O(m) query time to look up h(x) if we hash m values.
Making our whole quest for O(1) query time pointless!
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Efficiently Computable Hash Functions

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U → [n] is two universal if:

Pr[h(x) = h(y)] ≤ 1
n
.

Exercise: Rework the two level hashing proof to show that this
property is really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],
Pr[h(x) = h(y)] = 1

n (so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with p ≥ |U|. Choose random
a,b ∈ [p] with a ̸= 0. Represent x an an integer and let

h(x) = (ax+ b mod p) mod n.
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Pairwise Independence

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U → [n] is pairwise independent if for all i, j ∈ [n]:

Pr[h(x) = i ∩ h(y) = j] = 1
n2 .

Pairwise hash functions are 2-universal:

Pr[h(x) = h(y)] =
n∑

i=1

Pr[h(x) = i ∩ h(y) = i] = n · 1
n2 =

1
n
.

A closely related (ax+ b) mod p construction gives pairwise
independence on top of 2-universality.

Remember: A fully random hash function is both 2-universal and
pairwise independent. But it is not efficiently implementable.
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Another Application

Randomized Load Balancing:

Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

• Often assignment is done via a random hash function. Why?
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Weakness of Markov’sExpected Number of requests assigned to server i:

E[Ri] =

n∑

j=1

E[Irequest j assigned to i] =
n∑

j=1

Pr [j assigned to i] = n
k
.

If we provision each server be able to handle twice the
expected load, what is the probability that a server is
overloaded?

Applying Markov’s Inequality

Pr [Ri ≥ 2E[Ri]] ≤
E[Ri]

2E[Ri]
=

1
2
.

Not great...half the servers may be overloaded.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.
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Chebyshev’s inequality

With a very simple twist, Markov’s inequality can be made
much more powerful.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s
inequality:

Chebyshev’s inequality:

Pr(|X| ≥ t) =

Pr(X2 ≥ t2) ≤ E[X2]
t2

.

(by plugging in the random variable X− E[X])
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Chebyshev’s inequality

Pr(|X− E[X]| ≥ t) ≤ Var[X]
t2

What is the probability that X falls s standard deviations from it’s
mean?

Pr(|X− E[X]| ≥ s ·
√
Var[X]) ≤ Var[X]

s2 · Var[X] =
1
s2
.

X: any random variable, t, s: any fixed numbers.
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Law of Large Numbers

Consider drawing independent identically distributed (i.i.d.) random
variables X1, . . . , Xn with mean µ and variance σ2.

How well does the sample average S = 1
n
∑n

i=1 Xi approximate the
true mean µ?

Var[S] = Var

[
1
n

n∑

i=1

Xi

]

=
1
n2

n∑

i=1

Var [Xi] =
1
n2 · n · σ2 =

σ2

n
.

By Chebyshev’s Inequality: for any fixed value ϵ > 0,

Pr(|S− | ≥ ϵ) ≤ Var[S]
ϵ2

=
σ2

nϵ2
.

Law of Large Numbers: with enough samples n, the sample average
will always concentrate to the mean.

• Cannot show from vanilla Markov’s inequality.
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Load Balancing Variance

We can write the number of requests assigned to server i, Ri as:

Ri =
n∑

j=1

Ri,j

where Ri,j is 1 if request j is assigned to server i and 0 otherwise.

Var[Ri,j] = E
[(
Ri,j − E[Ri,j]

)2]

= Pr(Ri,j = 1) ·
(
1− E[Ri,j]

)2
+ Pr(Ri,j = 0) ·

(
0− E[Ri,j]

)2

=
1
k
·
(
1− 1

k

)2

+

(
1− 1

k

)
·
(
0− 1

k

)2

=
1
k
− 1

k2
≤ 1

k
=⇒ Var[Ri] ≤

n
k
.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.
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Bounding the Load via Chebyshevs

Letting Ri be the number of requests sent to server i, E[Ri] =
n
k and

Var[Ri] ≤ n
k .

Applying Chebyshev’s:

Pr

(
Ri ≥

2n
k

)
≤ Pr

(
|Ri − E[Ri]| ≥

n
k

)

≤ n/k
n2/k2

=
k
n
.

• Overload probability is extremely small when k ≪ n!

• Might seem counterintuitive – bound gets worse as k grows.

• When k is large, the number of requests each server sees in
expectation is very small so the law of large numbers doesn’t
‘kick in’.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.
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Maximum Server Load

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give

each 2n
k capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)

= Pr

([
R1 ≥

2n
k

]
∪
[
R2 ≥

2n
k

]
∪ . . . ∪

[
Rk ≥

2n
k

])

We want to show that Pr
(⋃k

i=1
[
Ri ≥ 2n

k
])

is small.

How do we do this? Note that R1, . . . ,Rk are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] = n

k . Var[Ri] =
n
k .

14

- -



Maximum Server Load

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give

each 2n
k capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)

= Pr

([
R1 ≥

2n
k

]
∪
[
R2 ≥

2n
k

]
∪ . . . ∪

[
Rk ≥

2n
k

])

We want to show that Pr
(⋃k

i=1
[
Ri ≥ 2n

k
])

is small.

How do we do this? Note that R1, . . . ,Rk are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] = n

k . Var[Ri] =
n
k .

14

I -



Maximum Server Load

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give

each 2n
k capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

([
R1 ≥

2n
k

]
∪
[
R2 ≥

2n
k

]
∪ . . . ∪

[
Rk ≥

2n
k

])

We want to show that Pr
(⋃k

i=1
[
Ri ≥ 2n

k
])

is small.

How do we do this? Note that R1, . . . ,Rk are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] = n

k . Var[Ri] =
n
k .

14

I -



Maximum Server Load

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give

each 2n
k capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

([
R1 ≥

2n
k

]
or
[
R2 ≥

2n
k

]
or . . . or

[
Rk ≥

2n
k

])

We want to show that Pr
(⋃k

i=1
[
Ri ≥ 2n

k
])

is small.

How do we do this? Note that R1, . . . ,Rk are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] = n

k . Var[Ri] =
n
k .

14



Maximum Server Load

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give

each 2n
k capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

( k⋃

i=1

[
Ri ≥

2n
k

])

We want to show that Pr
(⋃k

i=1
[
Ri ≥ 2n

k
])

is small.

How do we do this? Note that R1, . . . ,Rk are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] = n

k . Var[Ri] =
n
k .

14

- . .



Maximum Server Load

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give

each 2n
k capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

( k⋃

i=1

[
Ri ≥

2n
k

])

We want to show that Pr
(⋃k

i=1
[
Ri ≥ 2n

k
])

is small.

How do we do this? Note that R1, . . . ,Rk are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] = n

k . Var[Ri] =
n
k .

14

-

0 ¥



Maximum Server Load

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give

each 2n
k capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

( k⋃

i=1

[
Ri ≥

2n
k

])

We want to show that Pr
(⋃k

i=1
[
Ri ≥ 2n

k
])

is small.

How do we do this? Note that R1, . . . ,Rk are correlated in a
somewhat complex way.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] = n

k . Var[Ri] =
n
k .

14



The Union Bound

Union Bound: For any random events A1,A2, ..., Ak,

Pr (A1 ∪ A2 ∪ . . . ∪ Ak) ≤ Pr(A1) + Pr(A2) + . . .+ Pr(Ak).

When is the union bound tight? When A1, ..., Ak are all disjoint.
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Applying the Union Bound

What is the probability that the maximum server load exceeds
2 · E[Ri] =

2n
k . I.e., that some server is overloaded if we give each 2n

k
capacity?

Pr

(
max

i
(Ri) ≥

2n
k

)
= Pr

( k⋃

i=1

[
Ri ≥

2n
k

])

≤
k∑

i=1

Pr

([
Ri ≥

2n
k

])
(Union Bound)

≤
k∑

i=1

k
n

=
k2

n

(Bound from Chebyshev’s)

As long as k ≤ O(
√
n), with good probability, the maximum server

load will be small (compared to the expected load).

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. E[Ri] = n

k . Var[Ri] =
n
k . 16
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