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COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2022.
Lecture 25 (Final Lecture!)



- Problem Set 5 is due Dec 12 at 11:59pm.
- Exam is next Wednesday Dec 14, from 10:30am-12:30pm in class.

- | am holding office hours Friday 12/9 2:30-4:30pm and Monday
12/12 10am-12m. Both will be held in LGRC A215.

- It would be really helpful if you could fill out SRTIs for this class
(they close Dec 23).

- http://owl.umass.edu/partners/courseEvalSurvey/uma/.



Last Class:
- Analysis of gradient descent for convex and Lipschitz functions.
This Class:

- Extend gradient descent to constrained optimization via
projected gradient descent.

- Course wrap up and review.



GD Analysis Proof
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > Rifz iterations, n =
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Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.
E = arg minf(é),
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where S is a convex set.
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Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

0" = arg minf(g), Z @ N)V
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where S is a convex set. ﬂ)_ S Lot

Definition - Convex Set: A set S C RY is convex if and only if,
forany 65,6, € S and A € [0, 1]:
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Constrained Convex Optimization

Often want to perform convex optimization with convex constraints.

0" = arg minf(é),
des

where S is a convex set.

Definition - Convex Set: A set S C RY is convex if and only if,
forany 65,6, € S and A € [0, 1]:
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Projected Gradient Descent

For any convex set let Ps(+) denote the projection function onto S.

* Ps() = argming_g |0 — V2.
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Projected Gradient Descent

For any convex set let Ps(+) denote the projection function onto S.

* Ps(7) = argming_g |6 = V2.
- ForS ={f e RY: ||0]], < 1} what is Ps(¥)?

- For S being a k dimensional subspace of RY, what is Ps(})?
Projected Gradient Descent

- Choose some initialization 91 and setn =

s.\

- Fori=1,...,t—
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Convex Projections

Projected gradient descent can be analyzed identically to gradient
descent!



Convex Projections

Projected gradient descent can be analyzed identically to gradient
descent!

Theorem - Projection to a convex set: For any convex set S C
RY JeRI andfe S,

IPs(¥) = 6l < |IY - 6]l




Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > R'G iterations, n=
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Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > R'G iterations, n=
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f(6) < f(6.) + € = minf(8) + €
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Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > R'G iterations, n=
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Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > Rigf i = %,
and starting point within radius R of d,, outputs @ satisfying:

f(6) < f(6.) + € = minf(8) + €
0eS
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Projected Gradient Descent Analysis

Theorem - Projected GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > £ jterations, n = %,

€2

and starting point within radius R of d,, outputs @ satisfying:

f(6) < f(6.) + € = minf(8) + €
0eS

Recall: 6%, = 0 — - Vf(d) and 4, = Ps(8(3}").
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Course Review



Randomized Methods

Randomization as a computational resource for massive datasets.
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- Focus on problems that are easy on small datasets but hard at
massive scale - set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).
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Randomized Methods

Randomization as a computational resource for massive datasets.

- Focus on problems that are easy on small datasets but hard at
massive scale - set size estimation, load balancing, distinct
elements counting (MinHash), checking set membership (Bloom
Filters), frequent items counting (Count-min sketch), near
neighbor search (locality sensitive hashing).

- Just the tip of the iceberg on randomized
streaming/sketching/hashing algorithms. Check out 690RA if
you want to learn more.

- In the process covered probability/statistics tools that are very
useful beyond algorithm design: concentration inequalities,
higher moment bounds, law of large numbers, central limit
theorem, linearity of expectation and variance, union bound,
median as a robust estimator.
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Dimensionality Reduction

Methods for working with (compressing) high-dimensional data

- Started with randomized dimensionality reduction and the JL
lemma: compression from any d-dimensions to O(log n/¢?)
dimensions while preserving pairwise distances.

- Connections to the weird geometry of high-dimensional space.

- Dimensionality reduction via low-rank approximation and
optimal solution with PCA/eigendecomposition/SVD.

- Low-rank approximation of similarity matrices and entity
embeddings (e.g., LSA, word2vec, DeepWalk).

- Spectral graph theory — nonlinear dimension reduction and
spectral clustering for community detection.

- In the process covered linear algebraic tools that are very \jtﬁ ]\j\z
broadly useful in ML and data science: eigendecompositionhh(ﬁg) :\(ﬂi
singular value decomposition, projection, norm transformations.
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Foundations of continuous optimization and gradient descent.
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Continuous Optimization

Foundations of continuous optimization and gradient descent.

- Foundational concepts like convexity, convex sets, Lipschitzness,
directional derivative/gradient.

- How to analyze gradient descent in a simple setting (convex
Lipschitz functions).

- Simple extension to projected gradient descent for optimization
over a convex constraint set.

- Lots that we didn’t cover: online and stochastic gradient
descent, accelerated methods, adaptive methods, second order
methods (quasi-Newton methods), practical considerations.
Gave mathematical tools to understand these methods.
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Thanks for a great semester!
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Final Exam Questions/Review

Voo Ko (A%} = LPO\V\L(A> l ""“'\K(Z,DB
@ Yo KMB

AR
W > o) € mkl®) —
s}
¥ b
Bj - Hb Aoz _ Qb
1
7rx T“ 2% ) S (,,J\\dﬁﬂ:r:,f\g‘)




Final Exam Questions/Review
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Final Exam Questions/Review
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