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- Problem Set 5 is posted. It is due 12/12 (last day of classes). It is
optional and can give up to a 5% boost on your final grade.

+ The final will be on 12/14 in this room, 10:30am-12:30pm.

It is not cumulative and will follow a similar format to the
midterm.

- Final review sheet is posted under the 'Schedule Tab" and
practice exams posted on Moodle.

- My office hours today will end early aj_@. I'll hold additional
office hours in LGRC A215 on Friday 2:30-4:30pm and Monday
-
10am-12pm.



Last Class:

- Multivariable calculus review and gradient computation.

- Introduction to gradient descent. Motivation as a greedy
algorithm.

This Class:
- Conditions under which we will analyze gradient descent:
TCOWSS
- Analysis of gradient descent for Lipschitz, convex functions.
- Extension to projected gradient descent for constrained
optimization.




When Does Gradient Descent Work?
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Gradient Descent Update: 0, = 0, — nVf(0;)



Definition — Convex Function: A function f: RY — R is convex
if and only if, for any 6,0, € R? and \ € [0, 1];

E (1*A)~f(9?)+k~f(5z)zf((1*/\)-9}+A-9§)
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Corollary - Convex Function: A function f: R? — R is convex if
and only if, for any 5,6, € RY and X € [0,1]:
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Conditions for Gradient Descent Convergence

Convex Functions: After sufficient iterations, if the step size n is
chosen appropriately, gradient descent will converge to a
approximate minimizer 4 with:

J0) < J0-) + ¢ = minf(0) + .

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMs,...
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will converge to a approximate stationary point é with:
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Conditions for Gradient Descent Convergence

Convex Functions: After sufficient iterations, if the step size n is
chosen appropriately, gradient descent will converge to a
approximate minimizer 4 with:

f0) < F(0.) + ¢ = minf(0) + e.

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMs,...

Non-Convex Functions: After sufficient iterations, gradient descent
will converge to a approximate stationary point é with:

IVA@)ll2 < e.

Examples: neural networks, clustering, mixture models.



Lipschitz Functions
BER Vf(O)ER
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Gradient Descent Update:
f(@) i = 0; — V(9




Lipschitz Functions
BER Vf(O)ER

Gradient Descent Update:
[ r® G =5, V110
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Need to assume that the function is Lipschitz (size of gradient W
is bounded): There is some G s.t. S man Ve oo
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Well-Behaved Functions

Definition — Convex Function: A function f: RY — R is convex
if and only if, for any 6,0, € R? and \ € [0, 1];

= (=NAE) A FE) 2 F((1-2) 6+ 2 6)

Corollary - Convex Function: A function f: RY — R is convex if
and only if, for any 6,6, € R? and X € [0,1]:

- f8:) - f(6) = VG (6 - )
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Definition - Lipschitz Function: A function f : R — R is G-
Lipschitz if || VA(0), < G for all 6.
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GD Analysis - Convex Functions

A
Assume that: . n 1 9>
- fis convex. - 9 W\-
- fis G-Lipschitz. 8\ - D
. Hé} — §*||2 < R where @ is the initialization point.
Gradient Descent
x%_ - Choose some initialization 0, and set n = i
—

- Fori=1,...,t—1
* 01 = 0, — nVA(0))

- Return § = arg min9~1 @f(é;) &s
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > Rifz iterations, n = %,

. . . . . \_’ A . .
and starting point within radius R of 6,, outputs 6 satisfying:
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > Rifz iterations, n =

R
— A WY
and starting point within radius R of 6,, outputs 6 satisfying:

£(0) < fidL) + . @J\i iy

Step 1: For alli, f(6)) — f(§*)<@: i~
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G—

Lipschitz function f, GD run with t > Rifz iterations, n = W

and starting pomt within radius R of @, , outputs @ satisfying:

Ao L
\\”\\ :L@”\’ f6) < f(0:) + e

Step 1: For all i, f(d)) — f(d.) < 18.=0:1i~ “(’“ %A 4 18 Formally:
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > Rifz iterations, n =

R
— ~ W,
and starting point within radius R of 6., outputs 6 satisfying:

f(9) < f(6.) +e.

Step 1: For all j, f(97-) ff(@:) < 16,=0-13—11 =0 11 + ”TGZ
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > Rifz iterations, n =

R
— ~ W,
and starting point within radius R of 6., outputs 6 satisfying:

f(9) < f(6.) +e.

i Step 1: For all j, f(97-) ff(@:) < ”9}5"“5;7‘1@“7‘;"% + ”TGZ

Step 13: Vf(G) (6 — 8,) < 10=CL—10=01 4 16" . step 1 by
convexity.
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > Rifz iterations, n =

R
— ~ W,
and starting point within radius R of 6., outputs 6 satisfying:

f(6) < f(6.) +e.

Step 1: For all j, f(97-) ff(@:) < 10— Ge 5~ 11Bisr =0 1 + ”TGZ
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-

Lipschitz function f, GD run with t > Rifz iterations, n = %,

and starting point within radius R of 4,, outputs 8 satisfying:

f(6) < f(6.) + e

Step 1: For all i, f(6)) — f(6.) < 10=0-li-110.s
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > Rifz iterations, n = Giﬁ'
and starting point within radius R of d,, outputs @ satisfying:

f(é)<f(4)
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GD Analysis Proof

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > Rifz iterations, n =

R
S R GV
and starting point within radius R of 6,, outputs 6 satisfying:

f(B) < f(6.) + e
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