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- Problem Set 3 is due Monday at 11:59pm.

- No quiz due.



Last Class: Applications of Low-Rank Approximation
- Matrix completion ) \c\,(A
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Non-linear dimensionality reduction via low-rank
approximation of near-neighbor graphs




Last Class: Applications of Low-Rank Approximation

- Matrix completion
- Entity Embeddings.

- Non-linear dimensionality reduction via low-rank
approximation of near-neighbor graphs

This Class: Spectral Graph Theory and Spectral Clustering
Start on graph clustering for community detection and
non-linear clustering.
- Spectral clustering: finding good cuts via Laplacian eigenvectors.

+{ Start on stochastic block model: A simple clustered graph
model where we can prove the effectiveness of spectral
clustering.



Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.
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Spectral Clustering

A very common task is to partition or cluster vertices in a graph
based on similarity/connectivity.

Non-linearly separable data.

Next Few Classes: Find this cut using eigendecomposition. First -
motivate why this type of approach makes sense.



Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph
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Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.
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Cut Minimization

Simple Idea: Partition clusters along minimum cut in graph
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Small cuts are often not informative
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Solution: Encourage cuts that separate large sections of the graph

Let V€ R" be a cut indicator: V(i) =1ifi e S. V(i) = —1ifi e T.
f— —_
ant v to have roughly equal iumbers of1s and —1s. l.e,

V1~ 0.
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The Laplacian View

For a graph with adjacency matrix A and degree matrix D, L=D — A is
the graph Laplacian. 1 . \0
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The Laplacian View

For a cut indicator vector vV € {—1,1}" with V(i) = —1forie S
andV(i)=1forieT




The Laplacian View

E 9\,(\6@5
For a cut indicator vector Vv e {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1 VLV = 3 ee (V) = V() = 4 - cut(S, T).
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The Laplacian View

For a cut indicator vector Vv e {—1,1}" with V(i) = —1fori e S
andV(i)=1forieT

1 VIV = 3 ee (V) = V())? = 4 - cut(S, T).
2. V1= V| -S|

Want to minimize both V7LV (cut size) and ¥'T (imbalance).



The Laplacian View

For a cut indicator vector Vv e {—1,1}" with V(i) = —1fori e S
nd v(i)=1forieT:

1 VIV = 3 ee (V) = V())? = 4 - cut(S, T).
2. V1= V| -S|
ant to minimize both V'LV (cut size) and(VTﬂ(imbalance).

Next Step: See how this dual minimization problem is
naturally solved (sort of) by eigendecomposition.



Smallest Laplacian Eigenvector
vy

The smallest eigenvector of the Laplacian is: AL

e . :
LV =AY /\N . Vn = . argmin V'LV Vil
L\]TL\/ . 7\‘\IT\/ B ”// VERN with ||¥]|=1
~—with eigenvalue A\,(L) = \7T9L* = 0. Why?
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D.
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Second Smallest Laplacian Eigenvector

By Courant-Fis

Vi1 argmin VLY.
vERN with ||V||=1, V],v=0
—_— =

the second smallest ei ctor is given by:

Vv =0T

e
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"

degree matrix, L € R"X": Laplacian matrix L = A — D. S, T: vertex sets on

different sides of cut.

j{”:%-iagOﬂal

N

—



Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:
]

Vpoq = argmin VLY. Ve
vER" with ||]|=1, Vv=0 J

; .
If Vo_q were in j—in, in} it would have:
—_—

- cut(S,T) as small as possible given that
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"X": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

Vpoq = argmin VLY.
vERN with ||V||=1, V],v=0

n
If Vo_q were in {—ﬁ, ﬁ} it would have:
sV Ly = % - cut(S,T) as small as possible given that
- l.e., Vp_1 would indicate the smallest perfectly balanced

cut.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"X": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




Second Smallest Laplacian Eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

Vpoq = argmin VLY.
VERN with ||V]|=1, V]V=0 il 5\

, Ve ) Ve
If Vo_q were in {—ﬁ, ﬁ} it would have:
. - T . .
sV Ly = o cut(S, T) as small as possible given that
Vh_qn = S0 T= B =0

- l.e., Vp_1 would indicate the smallest perfectly balanced
cut.
- The eigenvector vV,_1 € R" is not generally binary, but still
satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"X": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

[—— arg min VILV.
veRdwith [|7]|=1, VT=0

Set S to be all nodes with vV, (i) < 0, T to be all with V(i) > 0.



Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

[—— arg min VILV.

veRdwith ||V]|=1, VT=0

Set S to be all nodes with vV, (i) < 0, T to be all with V(i) > 0.
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Cutting With the Second Laplacian Eigenvector

Find a good partition of the graph by computing

veRdwith [|7]|=1, VT=0
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Set S to be all nodes with vV, (i) < 0, T to be all with §(i) > 0.
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Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most

commonly used variants of this approach, using the normalized
Laplacian L = D~"/2LD~"/2,

_—
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L= A — D.
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Important Consideration: What to do when we want to split the
graph into more than two parts?

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L= A — D.

1



Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D~"/2LD~"/2,

Important Consideration: What to do when we want to split the
graph into more than two parts?

Spectral Clustering:

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D.

1



Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D~"/2LD~"/2,

Important Consideration: What to do when we want to split the
graph into more than two parts?

Spectral Clustering:

- Compute smallest k nonzero eigenvectors V_1, ..., V,_p of L.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D.

1



Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D~"/2LD~"/2,

ds

Important Consideration: What to do when we want lit the

graph into more than two parts?

Spectral Clustering:

- Compute smallest k nonzero eigenvectors vVy_1, ..., V,_p of L.

- Represent each node by its corresponding row in V e R"<*
whose columns are Vp_1,...V,_p.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D.
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Spectral Partitioning in Practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the normalized
Laplacian L = D~"/2LD~"/2,

Important Consideration: What to do when we want to split the
graph into more than two parts? -1

Spectral Clustering: Z
- Compute smallest k nonzero eigenvectors V_1, ..., V,_p of L.

- Represent each node by its corresponding row in V e R"<*
whose columns are Vp_1,...V,_p.

- Cluster these rows using k-means clustering (or really any
clustering method).

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D.
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Laplacian Embedding

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. I.e,, minimize

VL = > [V(0) = V()P

(i,j)eE
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Laplacian Embedding

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. I.e,, minimize

Vi = > [Wi) - V)P
(ij)eE
Embedding points with coordinates given by

Va—1()), Vn—2()), - - -, Vh_r(j)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance.
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Laplacian Embedding

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. I.e,, minimize

VLW =) () - V()P
(ij)eE
Embedding points with coordinates given by
Va—1()), Vn—2()), - - -, Vh_r(j)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance.

- Spectral Clustering

- Laplacian Eigenmaps

- Locally linear embedding
- Isomap

- Node2Vec, DeepWalk, etc.
(variants on Laplacian) 1




Laplacian Embedding

Original Data: (not linearly separable)
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k-Nearest Neighbors Graph:
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Laplacian Embedding
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Laplacian Embedding

Embedding with eigenvectors V,_+,V,_,: (linearly separable)
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