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Logistics

• Problem Set 3 is due Monday at 11:59pm.
• No quiz due Monday.
• I will hold additional office hours on Thursday from
11:30am-12:40pm.
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Summary

Last Class

• The Singular Value Decomposition (SVD) and its connection to
eigendecomposition of XTX and XXT, and low-rank
approximation.

This Class: Application of Low-Rank Approximation Beyond
Compression

• Low-rank matrix completion (predicting missing measurements
using low-rank structure).

• Entity embeddings (e.g., word embeddings, node embeddings).

• Low-rank approximation for non-linear dimensionality
reduction.

• Eigendecomposition to partition graphs into clusters.
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SVD Review

• Every X ∈ Rn×d can be written in its SVD as UΣVT.

• U ∈ Rn×r (orthonormal) contains the eigenvectors of XXT.
V ∈ Rd×r (orthonormal) contains the eigenvectors of XTX.
Σ ∈ Rr×r (diagonal) contains their eigenvalues.

• UkUT
kX = XVkVTk = UkΣkVTk = argmin

B s.t. rank(B)≤k
∥X− B∥F.
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Matrix Completion

Consider a matrix X ∈ Rn×d which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

Solve: Y = argmin
B s.t. rank(B)≤k

∑
observed (j,k)

[
Xj,k − Bj,k

]2
Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) unobserved entries. 5



Entity Embeddings

Dimensionality reduction embeds d-dimensional vectors into k
dimensions. But what about when you want to embed objects
other than vectors?

• Documents (for topic-based search and classification)
• Words (to identify synonyms, translations, etc.)
• Nodes in a social network

Classic Approach: Convert each item into a (very)
high-dimensional feature vector and then apply low-rank
approximation.
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Example: Latent Semantic Analysis
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Example: Latent Semantic Analysis

• If the error ∥X− YZT∥F is small, then on average,

Xi,a ≈ (YZT)i,a = ⟨⃗yi, z⃗a⟩.

• I.e., ⟨⃗yi, z⃗a⟩ ≈ 1 when doci contains worda.

• If doci and docj both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ ≈ 1.
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Example: Latent Semantic Analysis

If doci and docj both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ ≈ 1

Another View: Each column of Y represents a ‘topic’. y⃗i(j) indicates
how much doci belongs to topic j. z⃗a(j) indicates how much worda

associates with that topic.
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Example: Latent Semantic Analysis

• Just like with documents, z⃗a and z⃗b will tend to have high dot
product if worda and wordb appear in many of the same
documents.

• In an SVD decomposition we set ZT = ΣkVTK.
• The columns of Vk are equivalently: the top k eigenvectors of
XTX.

• Claim: ZZT is the best rank-k approximation of XTX. I.e.,
argminrank−k B ∥XTX− B∥F
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Example: Word Embedding

LSA gives a way of embedding words into k-dimensional space.

• Embedding is via low-rank approximation of XTX: where (XTX)a,b
is the number of documents that both worda and wordb appear
in.

• Think about XTX as a similarity matrix (gram matrix, kernel
matrix) with entry (a,b) being the similarity between worda and
wordb.

• Many ways to measure similarity: number of sentences both
occur in, number of times both appear in the same window of w
words, in similar positions of documents in different languages,
etc.

• Replacing XTX with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastText, etc.
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Example: Word Embedding

Note: word2vec is typically described as a neural-network
method, but can be viewed as just a low-rank approximation of
a specific similarity matrix. Neural word embedding as implicit
matrix factorization, Levy and Goldberg.
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Non-Linear Dimensionality Reduction

Is this set of points compressible? Does it lie close to a
low-dimensional subspace? (A 1-dimensional subspace of Rd.)

A common way of automatically identifying this non-linear structure
is to connect data points in a graph. E.g., a k-nearest neighbor graph.

• Connect items to similar items, possibly with higher weight
edges when they are more similar.
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Linear Algebraic Representation of a Graph

Once we have connected n data points x1, . . . , xn into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A ∈ Rn×n with Ai,j = edge weight between nodes i and j

In LSA example, when X is the term-document matrix, XTX is like an
adjacency matrix, where worda and wordb are connected if they
appear in at least 1 document together (edge weight is # documents
they appear in together).
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Adjacency Matrix Eigenvectors

How do we compute an optimal low-rank approximation of A?

• Project onto the top k eigenvectors of ATA = A2. These are
just the eigenvectors of A.

• A ≈ AVVT. The rows of AV can be thought of as
‘embeddings’ for the vertices.

• Similar vertices (close with regards to graph proximity)
should have similar embeddings.
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Spectral Embedding

Step 1: Produce a nearest
neighbor graph based on your
input data in Rd.
Step 2: Apply low-rank
approximation to the graph
adjacency matrix to produce
embeddings in Rk.
Step 3: Work with the data in the
embedded space. Where
distances represent distances in
your original ‘non-linear space.’
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Spectral Embedding

What other methods do you know
for embedding or representing
data points with non-linear
structure?
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Questions?
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