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- Problem Set 3 is posted. Due Monday 11/14, 11:59pm.
- Quiz this week due Monday at 8pm.



Last Class: Optimal Low-Rank Approximation

- When data lies close to V, the optimal embedding in that space
is given by projecting onto that space.

XW' = argmin ||X — BJZ.

B with rows in V

- Optimal V maximizes |XVV'||r and can be found greedily.
Equivalently by computing the top k eigenvectors of X'X.

This Class:

- How do we assess the error of this optimal V.

- Connection to the singular value decomposition.



Basic Set Up

Reminder of Set Up: Assume that Xy, ..., X, lie close to any

k-dimensional subspace V of R%. Let X € R"*? be the data matrix.
d-dimensional space

k-dim. subspace V

Let Vi, ..., V, be an orthonormal basis for V and V € R9*® be the
matrix with these vectors as its columns.

- W’ e R s the projection matrix onto V.

-« X~ X(WT). Gives the closest approximation to X with rows in V.

nal basis for subspace V. V e R9%k: matrix with columns V4, .. . , V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, ..., V, € RY: orthogo- ]
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Low-Rank Approximation via Eigendecomposition

V minimizing ||X — XWV'||Z is given by:

k
argmin X XWT2=  argmax  [XV[Z =XV [3
orthonormal VeRdxk orthonormal VERd Xk =
Solution via eigendecomposition: Letting V, have columns V4,. ..,V

corresponding to the top k eigenvectors of X'X,

Vi, = arg max [XV||?

orthonormal VERA %k

- Proof via Courant-Fischer and greedy maximization.

- How accurate is this low-rank approximation? Can understand
using eigenvalues of X'X.

X1,...,% € RY: data points, X € R"%9: data matrix, ¥, . .., V, € R%: orthogo-
nal basis for subspace V. V e R9>%k: matrix with columns V4, .. ., V.




Spectrum Analysis

Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
components). Approximation error is:

[IX = XViVEIIE = X[ tr(XTX) — [IXVEVE[I7 tr(VEXTXV)
d R
=D A(XTX) =) VXX,
i=1 =1

d k d
=S = YA = S A (xXx)

I=R+1

- Exercise: For any matrix A, [|A|Z = 37 (||| = tr(ATA) (sum of
diagonal entries = sum eigenvalues).

X1,...,%n € R data points, X € R"™ % data matrix, V4,...,V, € R% top
eigenvectors of X7X, Vi, € R9%F: matrix with columns v, . . ., V.




Spectrum Analysis

Claim: The error in approximating X with the best rank k

approximation (projecting onto the top k eigenvectors of X'X is:

dxd

d
IX = XVRVEIE = D A(X'X)

I=R+1

XX

A2

VT

error of optimal low rank
approximation

784 dimensional vec

G

- Choose k to balance accuracy/compression - often at an ‘elbow’.

[ Xi1,...,% € RY: data points, X € R"%%: data matrix, v, .

At Are ~EVTIVY A7~ AXR. mmatriv it o~Al e O =

eige

..,Vx € R% top ] 7



Spectrum Analysis

Plotting the spectrum of XX (its eigenvalues) shows how
compressible X is using low-rank approximation (i.e., how close
Xi1,...,X, are to a low-dimensional subspace).

784 dimensional vectors 784 dimensional vectors

eigendecomposition
? Eigenvalue Rank

X,...,% € RY data points, X € R">9: data matrix, v4,...,¥%, € R top
eigenvectors of X'X, Vi, € RY*k: matrix with columns V4, . .. , V.

Eigenvalue




Spectrum Analysis

784 dimensional vectors

eigendecomposition ' )

—

NEEA

Eigenvalue Rank

Exercises:

1. Show that the eigenvalues of XX are always positive. Hint:
Use that \; = VIXTXV,.

2. Show that for symmetric A, the trace is the sum of
eigenvalues: tr(A) = "7, A\(A). Hint: First prove the cyclic
property of trace, that for any MN, tr(MN) = tr(NM) and
then apply this to A’s eigendecomposition



- Many (most) datasets can be approximated via projection onto
a low-dimensional subspace.

- Find this subspace via a maximization problem:

max  ||XV]||Z.
orthonormal V

- Greedy solution via eigendecomposition of X'X.
- Columns of V are the top eigenvectors of X'X.

- Error of best low-rank approximation (compressibility of data) is
determined by the tail of X'X's eigenvalue spectrum.
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Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features
are correlated. SaAE

floors| sale price
home 1 2 2 195,000
home 2 a4 1 310,000
homen 5 3 450,000

Our compressed dataset is C = XV, where the columns of V,, are the
top k eigenvectors of X'X.

Observe that C'C = A,

C'Cis diagonal. l.e, all columns are orthogonal to each other, and
correlations have been removed. Maximal compression.

X,...,%: € RY data points, X € R"*9: data matrix, v4,...,¥%, € R top
eigenvectors of XTX, Vi, € R9%F: matrix with columns v, . . ., V.

n




Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

- Computing X'X requires O(nd?) time.
- Computing its full eigendecomposition to obtain vi, ..., V,
requires O(d°) time (similar to the inverse (X'X)~").

Many faster iterative and randomized methods. Runtime is roughly
O(ndR) to output just to top k eigenvectors v, . . . , V.
- Will see in a few classes (power method, Krylov methods).

- One of the most intensively studied problems in numerical
computation.

X1,...,% € R% data points, X € R"%%: data matrix, V,...,V, € R% top
eigenvectors of XX, V,, € Rk matrix with columns V4, . .. , V.
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Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X € R"™*9 with rank(X) = r can be written as X = UXV'.

- U has orthonormal columns i, ..., U, € R" (left singular
vectors).

-V has orthonormal columns vy, ..., V, € R? (right singular

vectors).

- X is diagonal with elements oy > 0, > ... > o, > 0 (singular

values).

nxd

orthonormal

positive diagonal

orthonormal

=| % U

01
a2

Or-1

2

vy
VT

of
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Connection of the SVD to Eigendecomposition

Writing X € R"*? in its singular value decomposition X = UXV":
X'X = VEUTUZV’ = vE?V' (the eigendecomposition)
Similarly: XX" = UZVIVEUT = UE?U'.

The left and right singular vectors are the eigenvectors of the
covariance matrix X’X and the gram matrix XX' respectively.

So, letting V,, € R?** have columns equal to V4, ..., Vi, we know that
XV, V] is the best rank-k approximation to X (given by PCA).

What about U,U[X where U, € R"™* has columns equal to s, ..., 0x?
Gives exactly the same approximation!

X € R"9: data matrix, U € R">rnk(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns V4, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). nositive di-
agonal matrix containing singular values of X.
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The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xp = arg min . _p, gernxa || X — B|e is given by:

Correspond to projecting the rows (data points) onto the span of V,

X = XVpV} = URUIX

= UZ, V]

or the columns (features) onto the span of Uy

nxd

Row (data point) compression

E B sm@m
=
EE
Eil B

home n

orthonormal positive diagonal

Column (feature) compression

10000* 10°

bedrooms| floors|

sale price

2 2
4 1

195,000
310000

450000

orthonormal

n x d (rank k)
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The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xp = arg min . _p, gernxa || X — B|e is given by:

Xp = XV,V], = URULX = U V],

X € R"4: data matrix, U € R">rnk(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrankX): matrix with orthonormal
columns V4, ¥, ... (right singular vectors), £ € Rrank(X)xrank(X). nositive di-
agonal matrix containing singular values of X.




The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xp = arg min . _p, gernxa || X — B|e is given by:

Xp = XV,V], = URULX = U V],

X € R"4: data matrix, U € R">rnk(X): matrix with orthonormal columns
U, U, ... (left singular vectors), V. e RIxrankX): matrix with orthonormal
columns V4, ¥, ... (right singular vectors), £ € Rrank(X)xrank(X). nositive di-
agonal matrix containing singular values of X.




