COMPSCI 514: Algorithms for Data Science

Cameron Musco

University of Massachusetts Amherst. Fall 2022.
Lecture 17



- Problem Set 3 is posted. Due Monday 11/14, 11:59pm.

- Quiz this week due Monday at 8pm.



Last Class: Optimal Low-Rank Approximation

- When data lies close to V, the optimal embedding in that space
is given by projecting onto that space.
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- Optimal V maximizes |[XVV'|r and can be found greedily.

Equivalently by computing the top k eigenvectors of X'X.
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Last Class: Optimal Low-Rank Approximation

- When data lies close to V, the optimal embedding in that space
is given by projecting onto that space.

XW' = argmin |X - B|2.

B with rows in V

- Optimal V maximizes ||XVV'|r and can be found greedily.
Equivalently by computing the top k eigenvectors of X'X.

This Class:

- How do we assess the error of this optimal V.

- Connection to the singular value decomposition.



Basic Set Up

Reminder of Set Up: Assume that Xi,...,X, lie close to any

k-dimensional subspace V of RY. Let X € R"*% be the data matrix.

d-dimensional space

k-dim. subspace V

Let Vi, ...,V be an orthonormal basis for V and V € R9** be the
matrix with these vectors as its columns.

- W' € R s the projection matrix onto V.
{ X~ X(WT). Gives the closest approximation to X with rows in V.

X1,...,% € RY: data points, X € R"%?: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, ..., V. b




Low-Rank Approximation via Eigendecomposition

V minimizing X — XWT|[2 is given by: oy \\ =[xy U]—

argmin [ X=XW|2=  argmax HXVHF:ZHXVJ-HQ

orthonormal VERIXk orthonormal VERY Xk =

X1,...,% € RY: data points, X € R"*%: data matrix, ¥, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V.




Low-Rank Approximation via Eigendecomposition

V minimizing ||X — XW'||2 is given by:

R
: T2 2 2112
argmin X XWT|[F= argmax  [XV[z =) [XV]
orthonormal VERIXk orthonormal VeRdxk =1
Solution via eigendecomposition: Letting V, have columns V4,. ..,V

corresponding to the top k eigenvectors of X'X,

Vi = arg max [IXV||2
orthonormal VERY*F
- =

X1,...,% € RY: data points, X € R"*%: data matrix, ¥, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V.




Low-Rank Approximation via Eigendecomposition

V minimizing ||X — XW'||2 is given by:

R
: T2 2 2112
argmin X XWT|[F= argmax  [XV[z =) [XV]
orthonormal VERIXk orthonormal VeRdxk =1
Solution via eigendecomposition: Letting V, have columns V4,. ..,V

corresponding to the top k eigenvectors of X'X,

Vi = arg max [IXV||2

orthonormal VERdxk

- Proof via Courant-Fischer and greedy maximization.

X1,...,% € RY: data points, X € R"*%: data matrix, ¥, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V.




Low-Rank Approximation via Eigendecomposition

V minimizing ||X — XWV'||2 is given by:

R
H T2 2 .12
argmin X XWT|[F= argmax  [XV[z =) [XV]
orthonormal VERIXk orthonormal VeRdxk =1
Solution via eigendecomposition: Letting V, have columns V4,. ..,V

corresponding to the top k eigenvectors of X'X,

Vi = arg max [IXV||2

orthonormal VERdxk

- Proof via Courant-Fischer and greedy maximization.

How accurate is this low-rank approximation? Can understand
using eigenvalues of X'X.
e

X1,...,% € RY: data points, X € R"*%: data matrix, ¥, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V.




Spectrum Analysis

Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
components). Approximation error is:

X — XV,VI |12 v-e Y

X — XViVi[|7

X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XX, Vi, € R4>k: matrix with columns V4, . . ., V.




Spectrum Analysis

Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
components). Approximation error is:

[IX = XViVE[TE = [IX]IF — thyf%

X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XX, Vi, € R4>k: matrix with columns V4, . . ., V.




Spectrum Analysis

Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
components). Approximation error is:

[IX = XVRVEIE = [IXIIE — [IXVe [

X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XX, Vi, € R4>k: matrix with columns V4, . . ., V.




Spectrum Analysis

Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
components). Approximation error is:

[IX = XVRVEIE = [IXIIE — [IXVe [

”\JII-Z :<\3,37 g ‘j_TB”
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- Exercise: For any matrix A, [[A[|Z = >7 [|d/[2 = tr(ATA) tsomrsf

_diagonatentries=sunTergervatues) —
X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XX, Vi, € R4>k: matrix with columns V4, . . ., V.




Spectrum Analysis

Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
components). Approximation error is:

X — XVRVE|[Z = tr(XTX) — tr(VIXTXV,)

- Exercise: For any matrix A, [|A2 = 20 [|Gi[|2 = tr(ATA)Mswm_of
. C . Y

X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XX, Vi, € R4>k: matrix with columns V4, . . ., V.




Spectrum Analysis

Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
components) Approxma{tugn error is:

X — XV,V] HF—tr(XTX) tr vTxTxv,e [~ ][ ij %

= Z/\,- X'X) — ZVTXTXV, Vi XTXV,
=1 =1
EN ) ‘bj T)\ (XT’L) V|
T N
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—2 Exercise: For any matrix A, A2 = 7 ||di|2 = tr(ATA)ZZsum of
diagonal entries = sum eigenvalues)

X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XX, Vi, € R4>k: matrix with columns V4, . . ., V.




Spectrum Analysis

Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
components). Approximation error is:

X — XVRVE|[Z = tr(XTX) — tr(VIXTXV,)
d R
=D A(XX) =) VXX
=1 i=1

d R
= Z AXTX) =Y T N(XTX)

- Exercise: For any matrix A, [|A|2 = 27 ||di[2 = tr(ATA) (sum of
diagonal entries = sum eigenvalues).

X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XX, Vi, € R4>k: matrix with columns V4, . . ., V.




Spectrum Analysis

Let Vi, ...,V be the top k eigenvectors of X'X (the top k principal
components). Approximation error is: \le 2 pn m\/\ [\y\ X\N “Y
X = XVRVE|[2 = tr(XTX) — tr(VIXTXV}) \/emﬁ‘

A NS
A d kR
x =3 A (XX) - Z XXV,
- . | d
=> /\,-(XTX Z MN(XTX) = Z Ai(XTX)
=1 L = =R+l

e q,\ocuw)\ \5'\ XX
- Exercise: For any matrix A, ||A[|2 = ZH [|djl|3 = tr(ATA) (sum of
diagonal entries = sum eigenvalues).

X,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XX, Vi, € R4>k: matrix with columns V4, . . ., V.




Spectrum Analysis

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
IX = XVRVEIIE = >~ A(X'X)
i=R+1

Xi,...,%X € RY data points, X € R"%9: data matrix, v,...,V, € R top
eigenvectors of XX, V, € RI*k: matrix with columns V4, .. . , V. 7




Spectrum Analysis

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
X = XVeVE[IE = D N(X'X)

i=k+1
dxd
A
A2
e
X™X =¥ %2.. TV A
=
\/\) .
error of optimal low rank
approximation
Xi,...,%X € RY data points, X € R"%9: data matrix, v,...,V, € R top

eigenvectors of XX, V, € RI*k: matrix with columns V4, .. . , V. 7




Spectrum Analysis

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
IX = XVRVEIIE = >~ A(X'X)
=t
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X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of X7X, Vi, € R?%k: matrix with columns ¥, . . ., V. 7




Spectrum Analysis

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
IX = XVRVEIIE = >~ A(X'X)
=t

784 dimensional vectors

eigendecomposition

—

Eigenvalue

Nls]- o

PR
| E\genva\ o Rank

L\Mj‘

el

eigenvectors of XTX, V, € RI%k: matrix with columns ¥, .

X1,...,% € R% data points, X € R"%%: data matrix, v, ..

.,V € R top
T




Spectrum Analysis

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
IX = XVRVEIIE = >~ A(X'X)
=t

784 dimensional vectors

eigendecomposition
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X,...,% € RY data points, X € R">9: data matrix, v4,...,V, € R top
eigenvectors of X'X, Vi, € RI%k: matrix with columns ¥, .

<oy Vp




Spectrum Analysis

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
IX = XVRVEIIE = >~ A(X'X)
=t

784 dimensional vectors

eigendecomposition

—

error from best raphk-15
approximation

Eigenvalue

o 5 10 15 2 mo%m 4w
Eigenvalue Rank

. {Choose k to balance accuracy/compression — often at an ‘elbow’.

X,...,% € RY data points, X € R">9: data matrix, v4,...,V, € R top
eigenvectors of X'X, Vi, € RI%k: matrix with columns ¥, .

SESE

<oy Vp




Spectrum Analysis

Plotting the spectrum of XX (its eigenvalues) shows how
compressible X is using low-rank approximation (i.e., how close

X1,...,X, are to a low-dimensional subspace).
/——j

X1,..., % € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, Vi, € R?*k: matrix with columns V, . . ., V.




Spectrum Analysis

Plotting the spectrum of XX (its eigenvalues) shows how
compressible X is using low-rank approximation (i.e., how close
X1,...,X, are to a low-dimensional subspace).
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X1,..., % € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of X'X, Vi, € R4>k: matrix with columns V4, . . ., V.




Spectrum Analysis

Plotting the spectrum of X’X (its eigenvalues) shows how
compressible X is using low-rank approximation (i.e., how close
X1,...,X, are to a low-dimensional subspace).

784 dimensional vectors
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g
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X1,..., % € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, Vi, € R?*k: matrix with columns V, . . ., V.




Spectrum Analysis

Plotting the spectrum of X’X (its eigenvalues) shows how
compressible X is using low-rank approximation (i.e., how close
X1,..., Xy are to a low-dimensional subspace).
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X,..., % € RY data points, X € R">9: data matrix, v4,...,V, € R top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , 7.




Spectrum Analysis

784 dlmensmnal vectors

elgendecomposmon g"
[ ] - Ei;h é‘ !
k=) ——

- T

Exercises:

1. Show that the eigenvalues of X'X are always positive. Hint:
Use that \; = VXXV, T

2) Show thmetric A, the trace is the sum of
eigenvalues:w =31 Ni(A). Hint: irst prove, the cyclic
property of trace, thaf‘fﬁ'ra—nyyl\ly, w) = W) and

then apply this to A’'s eigendecomposition
el dXn

mef. N 9



- Many (most) datasets can be approximated via projection onto
a low-dimensional subspace.

- Find this subspace via a maximization problem:

max ||XV||.
orthonomjaLV
Ven

- Greedy solution via eigendecomposition of XTX.
- Columns of V are the top eigenvectors of X'X.

- Error of best low-rank approximation (compressibility of data) is
determined by the tail of X'X's eigenvalue spectrum.



Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features

10000* 10* =

are correlated.

floors sale price
home 1 2 2 195,000
home 2 4 1 310,000

450,000

home n 5 3

X,...,% € RY data points, X € R">9: data matrix, v1,...,V, € R% top
eigenvectors of XX, V, € RI*k: matrix with columns ¥, .. . , 7.

1




Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features
are correlated. il S

floors| sale price
home 1 2 2 195,000
home 2 4 1 310,000
home n s 3 450,000

Our compressed dataset is C = XV, where the columns of V,, are the
top k eigenvectors of X'X.

X,...,% € RY data points, X € R">9: data matrix, v1,...,V, € R% top
eigenvectors of XX, V, € RI*k: matrix with columns ¥, .. . , 7.
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Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features
are correlated. il S

floors| sale price
home 1 2 2 195,000
home 2 4 1 310,000
home n s 3 450,000

Our compressed dataset is C = XV, where the columns of V,, are the
top k eigenvectors of X'X.

Observe that C'C =

X,...,% € RY data points, X € R">9: data matrix, v1,...,V, € R% top
eigenvectors of XX, V, € RI*k: matrix with columns ¥, .. . , 7.

1




Interpretation in Terms of Correlation

Recall: Low-rank approximation is possible when our data features
are correlated. il S

floors| sale price
home 1 2 2 195,000
home 2 4 1 310,000
home n s 3 450,000

Our compressed dataset is C g XV, wWhere the columns of V,, are the
top k eigenvectors of X'X.

Observe that C'C = A,

C'Cis diagonal. l.e, all columns are orthogonal to each other, and
correlations have been removed. Maximal compression.

X,...,% € RY data points, X € R">9: data matrix, v1,...,V, € R% top
eigenvectors of XX, V, € RI*k: matrix with columns ¥, .. . , 7.

1




Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

X,...,% € RY data points, X € R"9: data matrix, v4,...,% € R top
eigenvectors of XTX, Vi, € R?*k: matrix with columns v, .. ., V.

12



Algorithmic Considerations

Runtime to compute an optimal low-rank apprOX|mat|on

- Computing XX requires O(nd?) time. Q( X \Z[}

X,...,% € RY data points, X € R"9: data matrix, v4,...,% € R top
eigenvectors of XTX, Vi, € R?*k: matrix with columns v, .. ., V.

12



Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

- Computing X'X requires O(nd?) time.

- Computing its full eigendecomposition to obtain vy, ...,V
requires O(d?) time (similar to the inverse (X"X)~").

X,...,% € RY data points, X € R"9: data matrix, v4,...,% € R top
eigenvectors of XTX, Vi, € R?*k: matrix with columns v, .. ., V.

12



Algorithmic Considerations

Runtime to compute an optimal low-rank approxman&

- Computing X'X requires O(nd?) time. 5

fzomputmg its full eigendecomposition to obtain V4, ..., v

requires O(d’) time (similar to the inverse (X'X)~").

g ( (X"X)~") \‘&7,
Many faster iterative and randomized methods. Runtime is roughly
O(ndk) to output just to top k eigenvectors vi,. .., V.

245 . :
\E - Will see in a few classes (power method, Krylov methods).

-} One of the most intensively studied problems in numerical
computation.

X,...,% € RY data points, X € R"9: data matrix, v4,...,% € R top
eigenvectors of XTX, Vi, € R?*k: matrix with columns v, .. ., V.

12



Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices.

13



Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the

eigendecomposition to asymmetric (even rectangular) matrices. Any
H nxd i _ i _ T

matrix X € R"™? with rank(X) = r can be written as X = UXV'.

=

- U has orthonormal columns ds,. .., U, € R" (left singular
vectors).

— . . . .

-V has orthonormal columns V4, ..., v, € R? (right singular
vectors).

- X is diagonal with elements oy > 0, > ... > o, > 0 (singular
values). -

13



Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the

eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X € R"™*9 with rank(X) = r can be written as X = UZV',

Y& H

- U has orthonor\rnglﬁcpxlgm,rﬁuh ..., U, € R" (left singular

vectors). V2 VT
- V has orthonormal columns Vi, ..., V, € RY (right singular

vectors).
- X is diagonal with elements o4y > 0, > ... > o, > 0 (singular

't
values). ven” i
nxd orthonormal  positive diagonal ~ orthonormal
b3 VT
x = WM U Uy 0rs

Or

v
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Singular Value Decomposition

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X € R"™*9 with rank(X) = r can be written as X = UZV',

‘\_)_
- U has orthonormal columns ds,. .., U, € R" (left singular
vectors).
-V has orthonormal columns V4, ..., v, € R? (right singular
vectors).
- X is diagonal with elements oy > 0, > ... > o, > 0 (singular
values). T
nxd orthonormal  positive diagonal ~ orthonormal
b3 VT
x = WM U Uy 0rs .

13




Connection of the SVD to Eigendecomposition

Writing X € R™% in its s}i:ngular value decomposition X = UZV:
- z
Xx=ve oo = 2T
\__~

H l'\g\\)\via,
GO = A (XTX)

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.

14



Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
X'X =vzu'uzv’

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.
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Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
X'X =VEUTUZV" = vE2V"

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.
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Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":

X'X = VEUTUZV’ = vE?V' (the eigendecomposition)

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.
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Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = U}:VT:
XX =VEUTUZV" < VXV’ (the eigendecomposition)
Similarly: XX" = UZVVEUT = UX?U’.

oM — N~ ok

~ R

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.

14



Connection of the SVD to Eigendecomposition

vvrmn%x R”Xd in its singular value decomposition X = UXV":
_XIX=v=U'uzZV" = V=2V (the eigendecomposition)

i) 6]
Similarly: XK' = UEVIVEU' = UE'U'. Cy K{}

AN e
TheWddpand gt singular vectors are the eigenvectors of the

covariance matrix XTX and the gram matrix XX" respectlvely N =0

\1__,\@

y /V{/ |—|

X € R"*9: data matrix, U € R">"ank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.
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Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
X'X = VEUTUZV’ = vE?V' (the eigendecomposition) N é
Similarly: XX" = USV'VEUT = UZ?U". ALY

The left and right singular vectors are the eigenvectors of the
covariance matrix X'X and the gram matrix XX respectively.

So, letting V, € RY*F have columns equal to V4, ..., vy, we know that
XV, V] is the best rank-k approximation to X (given by PCA).
p——

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.
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Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
XX =VvZU'UZV' = V}:ZVT (the eigendecomposition)
Similarly: XX” = UZV'VEUT = Us2U’. X =\/zV

The left and right singular vectors are the eigenvectors of the X O \)
covariance matrix X'X and the gram matrix XX respectively. (\) %)T
\L

So, letting Vi, € RY*k have columns equal to V4, ..., Vi, we know Tt

XV,eVT is the best rank-k approximation to X (g|ven by PCA). W \Tf
('

Wha bout U U/X where U, € R™** has columns equal to Uy, ..., Ug?

] VO

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.
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Connection of the SVD to Eigendecomposition

Writing X € R"*% in its singular value decomposition X = UXV":
X'X = VEUTUZV’ = vE?V' (the eigendecomposition)

Similarly: XX" = UZVVEUT = UX?U’.

The left and right singular vectors are the eigenvectors of the

covariance matrix X'X and the gram matrix XX respectively.

So, letting V, € RY*F have columns equal to V4, ..., vy, we know that
XV, V] is the best rank-k approximation to X (given by PCA).

What about U,U[X where Uy, € Rk has columns equal to U, . .., U?
Gives exactly the same approximation!

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.

14



The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xp = arg min,. _r sernxd | X — BJ|F IS given by:

Xp = XVpV}, = ULUIX

15



The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:

Xp = arg min,. _r sernxd | X — BJ|F IS given by:

Correspond to projecting the rows (data points) onto the span of V,
or the columns (features) onto the span of U,

X, = XVV} = ULUiX

Row (data point) compression

784 dimensional vect

Hm

o

tors 4

home 1
home 2

home n

Column (feature) compression

100

sale price

195,000
310000

450,000
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The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xp = arg min . _r gernxd | X — BJ|F IS given by:

X, = XV,V], = U UX

Correspond to projecting the rows (data points) onto the span of V,
or the columns (features) onto the span of Uy

e

nxd __w positive diagonal ~ orthonormal
oy vi
[} vy
b3 VT
X =| ¥ | u, P

o
T T
oy vr
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The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xp = arg min . _r gernxd | X — BJ|F IS given by:

) T
X, = XV,RV] = U,UIX = Oki\g\}K

Correspond to projecting the rows (data points) onto the span of V,
or the columns (features) onto the span of U,

n x d (rank k) orthonormal  positive diagonal ~ orthonormal

C/3
Ok

xk =l w|y
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The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xp = arg min,. _r sernxd | X — BJ|F IS given by:

Xp = XVpV}| = URUIX = U X, V]

Correspond to projecting the rows (data points) onto the span of V,
or the columns (features) onto the span of U,

nxd (rank-k)  orthonormal positive diagonal  orthonormal

vl
(] V T T
2

zk k vy

Uy

Ok

Xk = % Uz U
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The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xp = arg min,. _r sernxd | X — BJ|F IS given by:
_ - =

Xo = XViV] = UsU[X = ukzkvk
AT ST !}\L

W, = Uz \)\/
ORI

I«

T e
®)

Y‘

e

UZ[%MZK RS REA

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.

i]L
0
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The SVD and Optimal Low-Rank Approximation

The best low-rank approximation to X:
Xp = arg min,. _r sernxd | X — BJ|F IS given by:

X = XV,V], = U,UIX = U, V] \

X € R"™d: data matrix, U € R"*rank(X): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e RIxrank(X): matrix with orthonormal
columns v, ¥, ... (right singular vectors), £ e Rrank(X)xrank(X). positive di-
agonal matrix containing singular values of X.

U6, Vb, -YG /’\)\Lﬂ\L
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