COMPSCI 514: Algorithms for Data Science

Cameron Musco University of Massachusetts Amherst. Fall 2022. Lecture 17

Logistics

- Problem Set 3 is posted. Due Monday 11/14, 11:59pm.
- · Quiz this week due Monday at 8pm.

Summary

Last Class: Optimal Low-Rank Approximation

• When data lies close to V, the optimal embedding in that space is given by projecting onto that space.

• Optimal V maximizes $||XVV^T||_F$ and can be found greedily. Equivalently by computing the top k eigenvectors of X^TX .

3

Summary

Last Class: Optimal Low-Rank Approximation

• When data lies close to \mathcal{V} , the optimal embedding in that space is given by projecting onto that space.

$$\mathbf{XVV}^T = \underset{\mathbf{B} \text{ with rows in } \mathcal{V}}{\text{arg min}} \|\mathbf{X} - \mathbf{B}\|_F^2.$$

• Optimal V maximizes $\|XVV^T\|_F$ and can be found greedily. Equivalently by computing the top k eigenvectors of X^TX .

This Class:

- How do we assess the error of this optimal V.
- Connection to the singular value decomposition.

2

Basic Set Up

Reminder of Set Up: Assume that $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for V and $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

• $\mathbf{W}^T \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .

 $X \approx X(VV^T)$. Gives the closest approximation to X with rows in V.

 $\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$.

V minimizing
$$\|\mathbf{X} - \mathbf{X}\mathbf{V}^T\|_F^2$$
 is given by:
$$\|\mathbf{X} - \mathbf{X}\mathbf{V}^T\|_F^2 = \underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \min} \|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2 = \underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{j=1}^k \|\mathbf{X}\vec{\mathbf{V}}_j\|_2^2$$

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \min} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T}\|_F^2 = \underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X} \mathbf{V}\|_F^2 = \sum_{j=1}^k \|\mathbf{X} \vec{\mathbf{V}}_j\|_2^2$$

Solution via eigendecomposition: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of X^TX ,

$$\mathbf{V}_{k} = \mathop{\mathsf{arg\,max}}\limits_{\mathsf{orthonormal}} \|\mathbf{X}\mathbf{V}\|_{F}^{2}$$

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \min} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 = \underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X} \mathbf{V}\|_F^2 = \sum_{j=1}^k \|\mathbf{X} \vec{\mathbf{V}}_j\|_2^2$$

Solution via eigendecomposition: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of X^TX ,

$$\mathbf{V}_k = \mathop{\mathsf{arg\,max}}\limits_{\mathsf{orthonormal}} \|\mathbf{X}\mathbf{V}\|_F^2$$

Proof via Courant-Fischer and greedy maximization.

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \min} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}\|_{\mathit{F}}^{2} = \underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X} \mathbf{V}\|_{\mathit{F}}^{2} = \sum_{j=1}^{\kappa} \|\mathbf{X} \vec{\mathbf{V}}_{j}\|_{2}^{2}$$

Solution via eigendecomposition: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of X^TX ,

$$\mathbf{V}_k = \mathop{\mathsf{arg\,max}}\limits_{\mathsf{orthonormal}} \|\mathbf{X}\mathbf{V}\|_F^2$$

Proof via Courant-Fischer and greedy maximization.

How accurate is this low-rank approximation? Can understand using eigenvalues of $\mathbf{X}^T\mathbf{X}$.

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of X^TX (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \underline{\mathbf{X}}\underline{\mathbf{V}}_{k}\mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2}$$

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2} = \|\mathbf{X}\|_{F}^{2} - \|\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2}$$

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2} = \|\mathbf{X}\|_{F}^{2} - \|\mathbf{X} \mathbf{V}_{k}\|_{F}^{2}$$

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2} = \|\mathbf{X}\|_{F}^{2} - \|\mathbf{X} \mathbf{V}_{k}\|_{F}^{2}$$

• Exercise: For any matrix \overrightarrow{A} , $\|A\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(A^TA)$ (sum of diagonal entries = sum eigenvalues).

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T}\|_F^2 = \mathrm{tr}(\mathbf{X}^\mathsf{T} \mathbf{X}) - \mathrm{tr}(\mathbf{V}_k^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{V}_k)$$

• Exercise: For any matrix A, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries – sum eigenvalues).

Let $\vec{V}_1, \dots, \vec{V}_k$ be the top k eigenvectors of $\vec{X}^T \vec{X}$ (the top k principal components). Approximation error is: $\|\vec{X} - \vec{X} \vec{V}_k \vec{V}_k^T\|_F^2 = \underbrace{\text{tr}(\vec{X}^T \vec{X})}_{i} - \underbrace{\text{tr}(\vec{V}_k^T \vec{X}^T \vec{X} \vec{V}_k)}_{i} - \underbrace{\sum_{i=1}^{d} \lambda_i (\vec{X}^T \vec{X})}_{i} - \underbrace{\sum_{i=1}^{d} \lambda_i (\vec{X}^T \vec{X})}_{i} \cdot \underbrace{\vec{V}_i^T \vec{X}^T \vec{X} \vec{V}_i}_{i}$ $1 \times \lambda$

 $\lambda_i (\mathbf{x}^{\mathsf{T}} \mathbf{X}) \cdot \mathbf{V}_i^{\mathsf{T}} \mathbf{V}_i = \lambda_i^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})$ $\longrightarrow \mathbf{Exercise:} \text{ For any matrix } \mathbf{A}, \|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \mathrm{tr}(\mathbf{A}^{\mathsf{T}} \mathbf{A}) (\text{sum of diagonal entries} = \text{sum eigenvalues})$

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\begin{split} \|\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}} \|_{F}^{2} &= \mathsf{tr}(\mathbf{X}^{\mathsf{T}} \mathbf{X}) - \mathsf{tr}(\mathbf{V}_{k}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{V}_{k}) \\ &= \sum_{i=1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}} \mathbf{X}) - \sum_{i=1}^{k} \vec{\mathbf{V}}_{i}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \vec{\mathbf{V}}_{i} \\ &= \sum_{i=1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}} \mathbf{X}) - \sum_{i=1}^{k} \lambda_{i}(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \\ \|\mathbf{X} \mathbf{V}_{k}\|_{F} \end{split}$$

• Exercise: For any matrix A, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is: $V_k = A_{\infty} m_{\infty} N_{\infty} ||X - XW^T||_F^2 = tr(X^TX) - tr(V_k^TX^TXV_k) V_k ||Y - XW^T||_F^2 = tr(X^TX) - tr(X^$ $= \sum_{i=1}^{d} \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X}) - \sum_{i=1}^{k} \vec{\mathbf{v}}_i^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\vec{\mathbf{v}}_i$ $=\sum_{i=1}^{d} \frac{\lambda_i(\mathbf{X}^T\mathbf{X}) - \sum_{i=1}^{k} \lambda_i(\mathbf{X}^T\mathbf{X})}{1 + \sum_{i=1}^{k} \lambda_i(\mathbf{X}^T\mathbf{X})} = \sum_{i=k+1}^{d} \frac{\lambda_i(\mathbf{X}^T\mathbf{X})}{2 + \sum_{i=1}^{k} \lambda_i(\mathbf{X}^T\mathbf{X})}$

• Exercise: For any matrix A, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of X^TX is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}} \mathbf{X})$$

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of X^TX is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^\mathsf{T} \mathbf{X})$$

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of X^TX is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T}\|_F^2 = \sum_{i=k+1}^d \lambda_i (\mathbf{X}^\mathsf{T} \mathbf{X})$$

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of X^TX is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2} = \sum_{i=k+1}^{d} \lambda_{i}(\mathbf{X}^{\mathsf{T}} \mathbf{X})$$
784 dimensional vectors

eigendecomposition

provided in the provided state of the provided in the p

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of X^TX is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i (\mathbf{X}^{\mathsf{T}} \mathbf{X})$$

Claim: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of X^TX is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

·/Choose k to balance accuracy/compression – often at an 'elbow'.

Plotting the spectrum of X^TX (its eigenvalues) shows how compressible X is using low-rank approximation (i.e., how close $\vec{x}_1, \ldots, \vec{x}_n$ are to a low-dimensional subspace).

Plotting the spectrum of X^TX (its eigenvalues) shows how compressible X is using low-rank approximation (i.e., how close $\vec{x}_1, \ldots, \vec{x}_n$ are to a low-dimensional subspace).

Plotting the spectrum of X^TX (its eigenvalues) shows how compressible X is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).

Plotting the spectrum of X^TX (its eigenvalues) shows how compressible X is using low-rank approximation (i.e., how close $\vec{x}_1, \ldots, \vec{x}_n$ are to a low-dimensional subspace).

Exercises:

- 1. Show that the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are always positive. Hint: Use that $\lambda_j = \vec{v}_i^T\mathbf{X}^T\mathbf{X}\vec{v}_j$.
- Show that for symmetric **A**, the trace is the sum of eigenvalues: $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^n \lambda_i(\mathbf{A})$. Hint: First prove the cyclic property of trace, that for any MN, $\operatorname{tr}(\mathbf{MN}) = \operatorname{tr}(\mathbf{NM})$ and then apply this to **A**'s eigendecomposition

Summary

- Many (most) datasets can be approximated via projection onto a low-dimensional subspace.
- Find this subspace via a maximization problem:

$$\max_{\substack{\text{orthonormal V}\\ \mathbf{V} \in \mathbf{D}^{\mathbf{I}_{\mathbf{X}}\mathbf{P}}}} \|\mathbf{X}\mathbf{V}\|_F^2.$$

- Greedy solution via eigendecomposition of X^TX .
- Columns of V are the top eigenvectors of X^TX .
- Error of best low-rank approximation (compressibility of data) is determined by the tail of $\mathbf{X}^T\mathbf{X}$'s eigenvalue spectrum.

Recall: Low-rank approximation is possible when our data features are correlated.

	10000* bathrooms+ 10* (sq. ft.) ≈ list price						
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price	
home 1	2	2	1800	2	200,000	195,000	
home 2	4	2.5	2700	1	300,000	310,000	
•			١.		•		
	•		١.		•		
					•		
home n	5	3.5	3600	3	450,000	450,000	
	_		ر	- 4		$\overline{-}$	

Recall: Low-rank approximation is possible when our data features are correlated.

10000* bathrooms+ 10* (sq. ft.) ≈ list price							
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price	
home 1	2	2	1800	2	200,000	195,000	
home 2	4	2.5	2700	1	300,000	310,000	
•			٠.	١ . ١			
	•		•		•		
home n	5	3.5	3600	3	450,000	450,000	

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of X^TX .

Recall: Low-rank approximation is possible when our data features are correlated.

10000* bathrooms+ 10* (sq. ft.) ≈ list price							
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price	
home 1	2	2	1800	2	200,000	195,000	
home 2	4	2.5	2700	1	300,000	310,000	
•			١.	'			
•	•		١.	٠.	•		
	•		٠.	·	•		
home n	5	3.5	3600	3	450,000	450,000	

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of X^TX .

Observe that $\mathbf{C}^{\mathsf{T}}\mathbf{C} =$

Recall: Low-rank approximation is possible when our data features are correlated.

10000* bathrooms+ 10* (sq. ft.) ≈ list price						
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•			١.			
	•		١.		•	
home n	5	3.5	3600	3	450,000	450,000

Our compressed dataset is $C \not\in XV_k$ where the columns of V_k are the top k eigenvectors of X^TX .

Observe that $\mathbf{C}^{\mathsf{T}}\mathbf{C} = \mathbf{\Lambda}_{k}$

 C^TC is diagonal. I.e., all columns are orthogonal to each other, and correlations have been removed. Maximal compression.

Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

· Computing X^TX requires $O(nd^2)$ time. $\sqrt{2}$

Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

- Computing X^TX requires $O(nd^2)$ time.
- Computing its full eigendecomposition to obtain $\vec{v}_1, \dots, \vec{v}_k$ requires $O(d^3)$ time (similar to the inverse $(\mathbf{X}^T\mathbf{X})^{-1}$).

Algorithmic Considerations

Runtime to compute an optimal low-rank approximation:

- Computing X^TX requires $O(nd^2)$ time.
- Computing its full <u>eigendecomposition</u> to obtain $\vec{v}_1, \ldots, \vec{v}_k$ requires $O(d^3)$ time (similar to the inverse $(X^TX)^{-1}$).

Many faster iterative and randomized methods. Runtime is roughly $\underline{\tilde{O}(ndk)}$ to output just to top k eigenvectors $\vec{v}_1, \dots, \vec{v}_k$.

- · Will see in a few classes (power method, Krylov methods).
- One of the most intensively studied problems in numerical computation.

 $\vec{x}_1,\ldots,\vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices.

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $X \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(X) = r$ can be written as $\underline{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.

- **U** has orthonormal columns $\vec{u}_1, \dots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- V has orthonormal columns $\vec{v}_1, \dots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > 0$ (singular values).

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $X \in \mathbb{R}^{n \times d}$ with rank(X) = r can be written as $X = U \Sigma V^T$.

- U has orthonormal columns $\vec{u}_1, \dots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- V has orthonormal columns $\vec{v}_1, \dots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r > 0$ (singular values).

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $X \in \mathbb{R}^{n \times d}$ with rank(X) = r can be written as $X = U \Sigma V^T$.

- **U** has orthonormal columns $\vec{u}_1, \dots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- V has orthonormal columns $\vec{v}_1, \dots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > 0$ (singular values).

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}}$$

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\mathbf{\Sigma}^{2}\mathbf{V}^{\mathsf{T}}$$

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$: $X^T X = V \Sigma U^T U \Sigma V^T = V \Sigma^2 V^T \text{ (the eigendecomposition)}$

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$: $\underline{\mathbf{X}^T \mathbf{X}} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T \text{ (the eigendecomposition)}$

Similarly:
$$\mathbf{X}\mathbf{X}^T = \underbrace{\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^T}_{\mathbf{X}} \underbrace{\mathbf{V}\boldsymbol{\Sigma}\mathbf{U}^T}_{\mathbf{X}} = \underbrace{\mathbf{U}\boldsymbol{\Sigma}^2\mathbf{U}^T}_{\mathbf{X}}.$$

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$:

$$\mathbf{Z}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\mathbf{\Sigma}^{2}\mathbf{V}^{\mathsf{T}}$$
 (the eigendecomposition)

Similarly:
$$XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$$
.

The With and right singular vectors are the eigenvectors of the covariance matrix X^TX and the gram matrix XX^T respectively.

 $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \mathrm{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \mathrm{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \ldots$ (right singular vectors), $\mathbf{\Sigma} \in \mathbb{R}^{\mathrm{rank}(\mathbf{X}) \times \mathrm{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of \mathbf{X} .

LAB BA

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^T\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T = \mathbf{V}\mathbf{\Sigma}^2\mathbf{V}^T$$
 (the eigendecomposition) Similarly: $\mathbf{X}\mathbf{X}^T = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T\mathbf{V}\mathbf{\Sigma}\mathbf{U}^T = \mathbf{U}\mathbf{\Sigma}^2\mathbf{U}^T$.

The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^T\mathbf{X}$ and the gram matrix $\mathbf{X}\mathbf{X}^T$ respectively.

So, letting $V_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \dots, \vec{v}_k$, we know that $XV_kV_k^T$ is the best rank-k approximation to X (given by PCA).

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

Similarly:
$$XX^T = U\Sigma V^T V\Sigma U^T = \underline{V\Sigma^2 V^T}$$
 (the eigendecomposition) $X = V\Sigma V^T V\Sigma U^T = \underline{V\Sigma^2 V^T}$ (the eigendecomposition)

The left and right singular vectors are the eigenvectors of the $\chi^T \bigcup_k \bigcup_k^7 \bigcup_k^7$ covariance matrix X^TX and the gram matrix XX^T respectively. $(1)_{X_1} X^T X^T$ So, letting $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \dots, \vec{v}_k$, we know that

 $XV_kV_k^T$ is the best rank-k approximation to X (given by PCA).

What about $U_k U_k^T X$ where $U_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \dots, \vec{u}_k$?

 $X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times rank(X)}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \dots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \mathsf{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \dots$ (right singular vectors), $\Sigma \in \mathbb{R}^{\text{rank}(X) \times \text{rank}(X)}$: positive diagonal matrix containing singular values of X.

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^T\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T = \mathbf{V}\mathbf{\Sigma}^2\mathbf{V}^T \text{ (the eigendecomposition)}$$

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The left and right singular vectors are the eigenvectors of the covariance matrix X^TX and the gram matrix XX^T respectively.

So, letting $V_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \dots, \vec{v}_k$, we know that $XV_kV_k^T$ is the best rank-k approximation to X (given by PCA).

What about $\mathbf{U}_k \mathbf{U}_k^T \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \dots, \vec{u}_k$? Gives exactly the same approximation!

The best low-rank approximation to **X**:

$$X_k = \operatorname{arg\,min}_{\operatorname{rank}\,-k} \, _{\mathsf{B} \in \mathbb{R}^{n \times d}} \| \mathsf{X} - \mathsf{B} \|_{\mathsf{F}}$$
 is given by:

$$\mathbf{X}_{k} = \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}} = \mathbf{U}_{k} \mathbf{U}_{k}^{\mathsf{T}} \mathbf{X}$$

The best low-rank approximation to X:

 $X_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ B \in \mathbb{R}^{n \times d}} \|X - B\|_F$ is given by:

$$\mathbf{X}_k = \underbrace{\mathbf{X}\mathbf{V}_k\mathbf{V}_k^\mathsf{T}}_{\mathbf{K}} = \mathbf{U}_k\mathbf{U}_k^\mathsf{T}\mathbf{X}$$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k

Column (feature) compression

10000* bathrooms+ 10* (sq. ft.) ≈ list price						
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000 310,000
home 2	4	2.5		1		510,000
				٠. ا		
home n	5	3.5	3600	3	450,000	450,000
nome II		5.5	5000	,	150,000	,000

The best low-rank approximation to X:

$$X_k = \operatorname{arg\,min}_{\operatorname{rank}\,-k} \, _{\mathsf{B} \in \mathbb{R}^{n imes d}} \, \|\mathsf{X} - \mathsf{B}\|_F$$
 is given by:

$$\mathbf{X}_{k} = \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}} = \mathbf{U}_{k} \mathbf{U}_{k}^{\mathsf{T}} \mathbf{X}$$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k

The best low-rank approximation to X:

 $\mathbf{X}_k = \operatorname{arg\,min}_{\mathsf{rank}\,-k} \, _{\mathbf{B} \in \mathbb{R}^{n \times d}} \, \|\mathbf{X} - \mathbf{B}\|_F \, \mathsf{is} \, \mathsf{given} \, \, \mathsf{by} \mathsf{:}$

$$\underline{X_k} = \underline{X}\underline{V_k}\underline{V_k^T} = \underline{\underline{U_k}\underline{U_k^T}}\underline{X} = \underline{V_k}\underline{V_k}\underline{V_k}$$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k

The best low-rank approximation to X:

 $X_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ B \in \mathbb{R}^{n \times d}} \|X - B\|_F$ is given by:

$$\mathbf{X}_{k} = \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}} = \mathbf{U}_{k} \mathbf{U}_{k}^{\mathsf{T}} \mathbf{X} = \mathbf{U}_{k} \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{\mathsf{T}}$$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k

The best low-rank approximation to **X**:

$$X_{k} = \arg\min_{\text{rank} - k} \frac{\|\mathbf{X} - \mathbf{B}\|_{F} \text{ is given by:}}{\mathbf{X}_{k} = \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T} = \mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{X} = \mathbf{U}_{k} \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}}$$

$$\mathbf{X}_{k} = \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T} = \mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{X} = \mathbf{U}_{k} \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}$$

$$\mathbf{X}_{k} = \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T} = \mathbf{U}_{k} \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}$$

$$\mathbf{X}_{k} = \mathbf{X} \mathbf{V}_{k}^{T} \mathbf{V}_{k}^{T} = \mathbf{V}_{k} \mathbf{\Sigma}_{k}^{T} \mathbf{V}_{k}^{T} = \mathbf{V}_{k} \mathbf{\Sigma}_{k}^{T} \mathbf{V}_{k}^{T}$$

$$\mathbf{X}_{k} = \mathbf{X} \mathbf{V}_{k}^{T} \mathbf{V}_{k}^{T} \mathbf{V}_{k}^{T} = \mathbf{V}_{k} \mathbf{\Sigma}_{k}^{T} \mathbf{V}_{k}^{T}$$

$$\mathbf{X}_{k} = \mathbf{X}_{k}^{T} \mathbf{V}_{k}^{T} \mathbf{V}_{k}^{T$$

The best low-rank approximation to **X**:

 $X_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ B \in \mathbb{R}^{n \times d}} \|X - B\|_F$ is given by:

