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- No-distortion embeddings for data lying in a k-dimensional
subspace via an orthonormal basis V & RI*F for that subspace.

RS
4\ View as low-rank matrix factorization. Introduce concept of
low-rank approximation.

- Idea of approximating a data matrix X with XWW" when the data
points lie close to the subspace spanned by V's columns.

- ‘Dual view’ of low-rank approximation: data points that can be
approximately reconstructed from a few basis vectors vs.
linearly dependent features.
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- Idea of approximating a data matrix X with XWW" when the data
points lie close to the subspace spanned by V's columns.

- ‘Dual view’ of low-rank approximation: data points that can be
approximately reconstructed from a few basis vectors vs.
linearly dependent features.

This Class:

- How to find an optimal orthogonal basis V € R%** to minimize
X=Xz



Low-Rank Factorizatoin

Claim: If X;,..., X, lie in a k-dimensional subspace V with
orthonormal basis V € R9**, the data matrix can be written as
T
RS .
! X =W/ (Implies rank(X) < k)
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VT is a projection matrix, which projects the rows of X (the data
points X, ..., X, onto the subspace V.
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X1,..., % € R%: data points, X € R"*9: data matrix, Vi, . .., ¥, € R9: orthogo-

nal basis for subspace V. V e R9><*: matrix with columns V4, .. ., V. 3




Low-Rank Approximation

Claim: If X;,..., X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:
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X1,...,% € RY: data points, X € R"%%: data matrix, v1, ..., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, ..., V. A




Properties of Projection Matrices

Quick Exercise 1: Show that W' is idempotent. l.es
(WN)(WT)y = (WT)y for any y € RY.
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Quick Exercise 2: Show that VW' (I — W) = 0 ( the projection is
orthogonal to its complement).,T
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Pythagorean Theorem

orem: For any orthonormal V € R9*k and any
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Best Fit Subspace

If X1,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVV'. XV gives optimal embedding of X in V.

Xi,...,% € RY: data points, X € R"%?: data matrix, ¥1, ..., v, € R orthogo-
nal basis for subspace V. V € R4*k: matrix with columns v, . .., V.




Best Fit Subspace
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nal basis for subspace V. V € R4*k: matrix with columns v, . .., V.
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Best Fit Subspace

If X1,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVV'. XV gives optimal embedding of X in V.
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Best Fit Subspace

If X1,...,X, are close to a k-dimensional subspace V with
orthonormal basisVz/Ed”, the data matrix can be approximated as
XVV'. XV gives optimal embedding of X in V.

How do we find V (equivilantly V)?
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nal basis for subspace V. V e R4><*: matrix with columns V4, ... , V.




Solution via Eigendecomposition

V minimizing ||X — XW'||2 is given by:
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X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R%: orthogo-
nal basis for subspace V. V e R4><*: matrix with columns ¥4, .. ., V. 8




Solution via Eigendecomposition

V minimizing ||X — XW'||2 is given by:
R

n
argmax [XV[Z=) VXI5 =D IIXV[3
i=1

orthonormal VERIxk =1

Surprisingly, can find the columns of V, V4,. .., V, greedily.
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Solution via Eigendecomposition

V minimizing ||X — XWV'||2 is given by:
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Vi = argmax V' X'XV. m :XTX

7 with [|v]|;=1

Vo = arg max VIXTXV.
7with [|v],=1, (V,7)=0

arg max VIXTXV.
P with [[v]l,=1, (7.7)=0 Vj<k

X1,...,% € RY: data points, X € R"*%: data matrix, v1, ..., V, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V. 8




Review of Eigenvectors and Eigendecomposition

Eigenvector: X € RY is an eigenvector of a matrix A € R9*? if

AX = \X for some scalar X (the eigenvalue corresponding to X).
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Review of Eigenvectors and Eigendecomposition

Eigenvector: X € RY is an eigenvector of a matrix A € R9*? if

AX = \X for some scalar A (the eigenvalue corresponding to X)

- Thatis, A just ‘stretches’ x.



Review of Eigenvectors and Eigendecomposition

Eigenvector: X € RY is an eigenvector of a matrix A € R9*? if
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Vi,...,Vq. Let V e R9%9 have these vectors as columns.
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Review of Eigenvectors and Eigendecomposition

Eigenvector: X € R? is an eigenvector of a matrix A € R9x9 if
AX = \X for some scalar X (the eigenvalue corresponding to X).

- Thatis, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors

Vi,...,Vq. Let V e R9%9 have these vectors as columns.
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Yields eigendecomposition: AW = A = VAV
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Review of Eigenvectors and Eigendecomposition
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Typically order the eigenvectors in decreasing order:
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Low-Rank Approximation via Eigendecomposition
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Low-Rank Approximation via Eigendecomposition

Upshot: Letting Vi, have columns Vi, ..., Vi corresponding to
the top k eigenvectors of the covariance matrix X'X, V,, is the
orthogonal basis minimizing

T2
X = XViVil[F,
B
X,..., % € RY data points, X € R"*%: data matrix, ¥,...,V, € R% top
eigenvectors of X7X, Vi, € R?%k: matrix with columns ¥, . . ., V.
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Low-Rank Approximation via Eigendecomposition

Upshot: Letting Vi, have columns Vi, ..., Vi corresponding to
the top k eigenvectors of the covariance matrix X'X, V,, is the

orthogonal basis minimizing
X = XVeVi12

This is principal component analysis (PCA).

How accurate is this low-rank approximation?

eigenvectors of X'X, V, € R?*k: matrix with columns ¥, . .

X,...,% € RY data points, X € R"9: data matrix, v, ..
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Low-Rank Approximation via Eigendecomposition

Upshot: Letting Vi, have columns Vi, ..., Vi corresponding to
the top k eigenvectors of the covariance matrix X'X, V,, is the
orthogonal basis minimizing

X — XVR V||,

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand

using eigenvalues of X’X.
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eigenvectors of X7X, Vi, € R?%k: matrix with columns ¥, . . ., V.
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