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- We will be grading the exams this week.

- We will release solutions, but still have some students taking
make up exams, so are holding off.

- Feel free to ask about the questions in office hours.



Last Few Classes: The Johnson-Lindenstrauss Lemma
- Dimensionality reduction and low-distortion embeddings.

- Statement of the JL Lemma: we can obtain low-distortion
embeddings for any set of points via random projection.

- Reduction of the JL Lemma to the ‘distributional JL Lemma’.

-+ Proof of the distributional JL lemma.

This Class:
- Connections between the JL Lemma, low-distortion
embeddings, and high dimensional geometry.
Next Few Classes:

- Data-dependent dimensionality reduction via PCA. Formulation
as low-rank matrix approximation.



The Johnson-Lindenstrauss Lemma and High
Dimensional Geometry

- High-dimensional Euclidean space looks very different
from low-dimensional space. So how can JL work?

- Is Euclidean distance in high-dimensional meaningless,
making JL useless? (The curse of dimensionality)



Low-Dimensional Intuition

d-dimensional space

k-dim. subspace V

This can be a bit dangerous as in reality high-dimensional space is
very different from low-dimensional space. 5



Orthogonal Vectors

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space?
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Nearly Orthogonal Vectors

What is the largest set of unit vectors in d-dimensional space that
have all pairwise dot products |(X,y)| < €? (think e = .01)

a)d b) ©(d) c) ©(c?) d) 20@)

In fact, an exponentially large set of random vectors will be nearly
pairwise orthogonal with high probability!



Orthogonal Vectors Proof

Claim: 29(¢9 random d-dimensional unit vectors will have all

pairwise dot products |(X,y)| < e (be nearly orthogonal) with high
probability.

Proof: Let Xi,...,X; each have independent random entries set to
+1/V/d.

- What is ||X;||,? Every X; is always a unit vector.

+ What is E[(X,,%)]? E[(%,%)] = 0

- By a Chernoff bound, Pr[|(X;, )| > €] < 2e~<9/6 (great exercise).

- If we chose t = %e‘zd/”, using a union bound over all
(1) < Le'9/® possible pairs, with probability > 3/ all will be
nearly orthogonal.



Curse of Dimensionality

Up Shot: In d-dimensional space, a set of 29(<'d) random unit vectors
have all pairwise dot products at most e (think e = .01)

—T—

1% = X112 = [IXill5 + 15112 — 2X7%; € [1.98,2.02].

Even with an exponential number of random vector samples, we
don’t see any nearby vectors.

- One version of the ‘curse of dimensionality’.

- If all your distances are roughly the same, distance based
methods (k-means clustering, nearest neighbors, SVMs, etc.)
aren’t going to work well.

- Distances are only meaningful if we have lots of structure and
our data isn't just independent random vectors.



Curse of Dimensionality

Distances for MNIST Digits:
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Distances for Random Images:

Another Interpretation: Tells us that random data can be a very bad
model for actual input data. 10



Connection to Dimensionality Reduction

Recall: The Johnson Lindenstrauss lemma states that if 1 € R™*? s
a random matrix (linear map) with m =0 ('°§”), for X, ..., X, e R4
with high probability, for all i, J:

(1= a)lI%i = X[l < 0% = K5 < (1+ lIX; = K15

Implies: If X;,..., X, are nearly orthogonal unit vectors in
d-dimensions (with pairwise dot products bounded by ¢/8), then
HI‘IHTX;HZ""’ H”X 4 are nearly orthogonal unit vectors in m-dimensions

(with pairwise dot products bounded by e).

Algebra is a bit messy but a good exercise to partially work
through.

n



Connection to Dimensionality Reduction

Claim 1: n nearly orthogonal unit vectors can be projected to
m=20 ('°g”) dimensions and still be nearly orthogonal.

€2

Claim 2: In m dimensions, there are at most 2°(€’M nearly
orthogonal vectors.

- For both these to hold it must be that n < 20(¢'m).

. 20(em) > 70(logn) — n_Tells us that the JL lemma is optimal
up to constants.

- mis chosen just large enough so that the odd geometry of
d-dimensional space still holds on the n points in
question after projection to a much lower dimensional
space.
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Bizarre Shape of High-Dimensional Balls

Let By be the unit ball in d dimensions. By = {x € RY : ||x||, < 1}.

What percentage of the volume of B, falls within e distance of its
surface? Answer: all but a (1 — ¢€)? < e=<? fraction. Exponentially
small in the dimension d!

d
Volume of a radius R ball is d/z)l - R, 1



Bizarre Shape of High-Dimensional Balls

All but an e=<? fraction of a unit ball's volume is within € of its
surface. If we randomly sample points with ||x||; < 1, nearly all will
have [[x], > 1—e

- Isoperimetric inequality: the ball has the minimum surface
area/volume ratio of any shape.

ooQ

- If we randomly sample points from any high-dimensional
shape, nearly all will fall near its surface.

- ‘All points are outliers! 14



Bizarre Shape of High-Dimensional Balls

What fraction of the small cubes are visible on the surface of the
larger 10 x 10 x 10 cube?

10° — 8% 1000 — 512

= = .488.
103 1000 88



Bizarre Shape of High-Dimensional Balls

What percentage of the volume of B, falls within e distance of its
equator? Answer: all but a 28(=<'d fraction.

Formally: volume of set S = {X € By : [x(1)] < €}

By symmetry, all but a 22(=<9) fraction of the volume falls within e of
any equator! S={x € By : |<x,t>| <e} 16



Bizarre Shape of High-Dimensional Balls

Claim 1: All but a 29(=<’d fraction of the volume of a ball falls within
e of any equator.

Claim 2: All but a 29(=<d) fraction falls within € of its surface.

How is this possible? High-dimensional space looks nothing like this
picture! 7



Take-aways

- High-dimensional space behaves very differently from
low-dimensional space.

- Random projection (i.e., the JL Lemma) reduces to a much

lower-dimensional space that is still large enough to
capture this behavior on a subset of n points.

- Need to be careful when using low-dimensional intuition
for high-dimensional vectors.

- Need to be careful when modeling data as random vectors
in high-dimensions.



Additional Material
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Concentration of Volume At Equator

Claim: All but a 22(=<’d fraction of the volume of a ball falls within e
of its equator. le, in S = {x € By : [x(1)| < €}.

Proof Sketch:

- Let x have independent Gaussian N(0, 1) entries and let
X = HXH X is selected uniformly at random from the surface of
the ball.

- Suffices to show that Pr[[X(1)| > €] < 29(=<'d)_ why?

© X(1) = 75E. What is B[ ZPE[IxI3] = S5 EX()Y] = d.

Priix|l3 < d/2] < 279
- Conditioning on ||| > d/2, since x(1) is normally distributed,
Pr{x(1)] > €] = Prlix(1)] > € [Ix]}2]
< Prl|x(1)| > € \/d/2] = 20 (eV/4/2)") = 20(=<d)
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High-Dimensional Cubes

Let Cy4 be the d-dimensional cube: Cq = {x € R? : |x(i)] <1V i}.

In low-dimensions, the cube is not that different from the ball.

d
But volume of Cy is 2¢ while volume of B9 is @ = = - A huge gap!
So something is very different about these shapes...
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High-Dimensional Cubes

2 dimensions

\ high dimensions

Corners of cube are v/d times further away from the origin than the
surface of the ball.
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High-Dimensional Cubes

Data generated from the ball By will behave very differently than
data generated from the cube Cy.

-« X ~ By has [|x]|3 < 1.
- X ~ Cy has E[|x]2] =7d/3, and Pr[|x|2 < d/6] < 2-©().

- Almost all the volume of the unit cube falls far away from the
origin - i.e,, far outside the unit ball.

2 dimensions high dimensions

1Y
b |
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